Skip to main content

Investigating the Features of Various Plate Models Under the Thermal Shock in the ANSYS Package

  • Conference paper
  • First Online:
XV International Scientific Conference “INTERAGROMASH 2022” (INTERAGROMASH 2022)

Abstract

The paper considers the features of the numerical simulation of a thin plate under the thermal shock in the ANSYS package. The temperature fields of one-layer and three-layer plates are investigated. Their comparative analysis is carried out. The features of the results obtained are identified and explained using various models. The presented results can be used to simulate the thermal shock of a thin plate using the ANSYS package.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boley, B., Weiner, J.: Theory of thermal stresses, p. 580. John Wiley & Sons, New York (1960)

    MATH  Google Scholar 

  2. Lykov, A.V.: Application of methods of thermodynamics of irreversible processes to the study of heat and mass transfer. J. Eng. Phys. Thermophys 9(3), 287–304 (1965)

    Google Scholar 

  3. Kartashov, E.M.: Model representations of heat shock in terms of dynamic thermal elasticity. Russian Technol. J. 8(2), 85–108 (2020)

    Article  Google Scholar 

  4. Gadalla, M., Ghommem, M., Bourantas, G., Miller, K.: Modeling and thermal analysis of a moving spacecraft subject to solar radiation effect. Processes 7(11), 807 (2019)

    Article  Google Scholar 

  5. Sedelnikov, A.V., Orlov, D.I.: Development of control algorithms for the orbital motion of a small technological spacecraft with a shadow portion of the orbit. Microgravity Sci. Technol. 32(5), 941–951 (2020)

    Article  Google Scholar 

  6. Shen, Z., Hu, G.: Thermally Induced Dynamics of a Spinning Spacecraft with an Axial Flexible Boom. J. Spacecr. Rocket. 52(5), 1–6 (2015)

    Article  Google Scholar 

  7. Sedelnikov, A.V., Orlov, D.I.: Analysis of the significance of the influence of various components of the disturbance from a temperature shock on the level of microaccelerations in the internal environment of a small spacecraft. Microgravity Sci. Technol. 33(2), 22 (2021)

    Article  Google Scholar 

  8. Belousova, D.A., Serdakova, V.V.: Modeling the temperature shock of elastic elements using a one-dimensional model of thermal conductivity. Int. J. Modeling Simul. Sci. Comput. 11(6), 2050060 (2020)

    Article  Google Scholar 

  9. Sedelnikov, A.V.: The assessment problem of microaccelerations at the experimental sample of the small spacecraft «AIST» after the battery degradation and the method of its solution. Microgravity Sci. Technol. 32(4), 673–679 (2020)

    Article  Google Scholar 

  10. Garmendia, I., Anglada, E., Vallejo, H., Seco, M.: Acurate calculation of conductive conductances in complex geometries for spacecraft thermal models. Adv. Space Res. 57, 1087–1097 (2016)

    Article  Google Scholar 

  11. Sedelnikov, A.V., Rodina, V.S., Orlov, D.I.: Modeling the effect of temperature deformations of large elements on the dynamics of the orbital motion of a small spacecraft. J. Phys: Conf. Ser. 1368, 042074 (2019)

    Google Scholar 

  12. Ivashova, T.A.: The use of measuring current information from solar panels to estimate the angular velocity of rotation of a small spacecraft. In: International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon); 2020 Oct 6–9; Vladivostok, Russia, p. 1–6 (2020)

    Google Scholar 

  13. Anshakov, G.P., Belousov, A.I., Sedel’nikov, A.V., Gorozhankina, A.S.: Efficiency estimation of electrothermal thrusters use in the control system of the technological spacecraft motion. Russian Aeronaut. 61(3), 347–354 (2018). https://doi.org/10.3103/S1068799818030054

    Article  Google Scholar 

  14. Chamberlain, M.K., Kiefer, S.H., Banik, J.A.: On-orbit structural dynamics performance of the roll-out solar array. American Institute of Aeronautics and Astronautics Spacecraft Structures Conference 2018. In: Proceedings of the AIAA Spacecraft Structures Conference; 2018 Jan 8–12; Kissimmee. USA. Reston: American Institute of Aeronautics and Astronautics, p. 1–9 (2018)

    Google Scholar 

  15. Sedelnikov, A.V., Filippov, A.S., Gorozhakina, A.S.: Evaluation of calibration accuracy of magnetometer sensors of Aist small spacecraft. J. Phys: Conf. Ser. 1015, 032045 (2018)

    Google Scholar 

  16. Shen, Z., Tian, Q., Liu, X., Hu, G.: Thermally induced vibrations of flexible beams using Absolute Nodal Coordinate Formulation. Aerosp. Sci. Technol. 29, 386–393 (2013)

    Article  Google Scholar 

  17. Sedelnikov, A.V., Serpukhova, A.A.: Simulation of a flexible spacecraft motion to evaluate microaccelerations. Russian Aeronaut. 52(4), 71–72 (2009)

    Google Scholar 

  18. Tkachenko, S.I., Salmin, V.V., Tkachenko, I.S., Kaurov, I.V., Korovin, M.D.: Verifying parameters of ground data processing for the thermal control system of small spacecraft AIST based on telemetry data obtained by Samara. Proc. Eng. 185, 205–211 (2017)

    Article  Google Scholar 

  19. Sedelnikov, A.V., Potienko, K.I.: Analysis of reduction of controllability of spacecraft during conducting of active control over microaccelerations. Int. Rev. Aerosp. Eng. 10(3), 160–166 (2017)

    Google Scholar 

  20. Abrashkin, V.I., et al.: Uncontrolled rotary motion of the AIST small spacecraft prototype. Cosm. Res. 55(2), 128–141 (2017)

    Article  MathSciNet  Google Scholar 

  21. Sedelnikov, A.V.: Mean of microaccelerations estimate in the small spacecraft internal environment with the use fuzzy sets. Microgravity Sci. Technol. 30(4), 503–509 (2018)

    Article  Google Scholar 

  22. Belousov, A.I., Sedelnikov, A.V.: Probabilistic Estimation of Fulfilling Favorable Conditions to Realize the Gravity-Sensitive Processes Aboard a Space Laboratory. Russian Aeronaut. 56(3), 297–302 (2013)

    Article  Google Scholar 

  23. Orlov, D.I.: Modeling the Temperature Shock Impact on the Movement of a Small Technological Spacecraft. AIP Conf. Proc. 2340, 050001 (2021)

    Article  Google Scholar 

  24. Sedelnikov, A.V.: Algorithm for restoring information of current from solar panels of a small spacecraft prototype «Aist» with help of normality conditions. J. Aeronaut. Astronaut. Aviation 54(1), 67–76 (2022)

    Google Scholar 

  25. Yang, H., Liu, L., Liu, Y., Li, X.: Modeling and micro-vibration control of flexible cable for disturbance-free payload spacecraft. Microgravity Sci. Technol. 33(4), 1–16 (2021). https://doi.org/10.1007/s12217-021-09897-1

    Article  MathSciNet  Google Scholar 

  26. Sedelnikov, A.V., Glushkov, S.V., Serdakova, V.V., Evtushenko, M.A., Khnyryova, E.S.: Simulating the stress-strain state of a thin plate after a thermal shock. Int. J. Modeling Simul. Sci. Comput. (2021). https://doi.org/10.1142/S1793962322500246

    Article  Google Scholar 

  27. Taneeva, A.S.: The formation of the target function in the design of a small spacecraft for technological purposes. J. Phys: Conf. Ser. 1901(1), 012026 (2021)

    Google Scholar 

  28. Sedelnikov, A.V., Serdakova, V.V., Khnyryova, E.S.: Construction of the criterion for using a two-dimensional thermal conductivity model to describe the stress-strain state of a thin plate under the thermal shock. Microgravity Sci. Technol. 33(6), 65 (2021)

    Article  Google Scholar 

Download references

Acknowledgments

The work was carried out within the framework of the project «Development of scientific and technical foundations and design solutions that ensure the implementation of the required level of microaccelerations on board small spacecraft» (No. 22–19-00483).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Orlov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Orlov, D., Serdakova, V., Evtushenko, M., Khnyryova, E., Nikolaeva, A. (2023). Investigating the Features of Various Plate Models Under the Thermal Shock in the ANSYS Package. In: Beskopylny, A., Shamtsyan, M., Artiukh, V. (eds) XV International Scientific Conference “INTERAGROMASH 2022”. INTERAGROMASH 2022. Lecture Notes in Networks and Systems, vol 574. Springer, Cham. https://doi.org/10.1007/978-3-031-21432-5_340

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21432-5_340

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21431-8

  • Online ISBN: 978-3-031-21432-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics