Skip to main content

Expanding Language-Image Pretrained Models for General Video Recognition

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13664))

Included in the following conference series:

Abstract

Contrastive language-image pretraining has shown great success in learning visual-textual joint representation from web-scale data, demonstrating remarkable “zero-shot” generalization ability for various image tasks. However, how to effectively expand such new language-image pretraining methods to video domains is still an open problem. In this work, we present a simple yet effective approach that adapts the pretrained language-image models to video recognition directly, instead of pretraining a new model from scratch. More concretely, to capture the long-range dependencies of frames along the temporal dimension, we propose a cross-frame attention mechanism that explicitly exchanges information across frames. Such module is lightweight and can be plugged into pretrained language-image models seamlessly. Moreover, we propose a video-specific prompting scheme, which leverages video content information for generating discriminative textual prompts. Extensive experiments demonstrate that our approach is effective and can be generalized to different video recognition scenarios. In particular, under fully-supervised settings, our approach achieves a top-1 accuracy of 87.1% on Kinectics-400, while using 12\(\times \) fewer FLOPs compared with Swin-L and ViViT-H. In zero-shot experiments, our approach surpasses the current state-of-the-art methods by +7.6% and +14.9% in terms of top-1 accuracy under two popular protocols. In few-shot scenarios, our approach outperforms previous best methods by +32.1% and +23.1% when the labeled data is extremely limited. Code and models are available at here.

B. Ni and M. Chen—Work done during internship at Microsoft Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akata, Z., Perronnin, F., Harchaoui, Z., Schmid, C.: Label-embedding for image classification. IEEE T-PAMI 38, 1425–1438 (2015)

    Article  Google Scholar 

  2. Akata, Z., Reed, S., Walter, D., Lee, H., Schiele, B.: Evaluation of output embeddings for fine-grained image classification. In: CVPR, pp. 2927–2936 (2015)

    Google Scholar 

  3. Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., Schmid, C.: ViViT: a video vision transformer. In: ICCV, pp. 6836–6846 (2021)

    Google Scholar 

  4. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)

  5. Bertasius, G., Wang, H., Torresani, L.: Is space-time attention all you need for video understanding? In: ICML, pp. 813–824 (2021)

    Google Scholar 

  6. Brattoli, B., Tighe, J., Zhdanov, F., Perona, P., Chalupka, K.: Rethinking zero-shot video classification: end-to-end training for realistic applications. In: CVPR, pp. 4613–4623 (2020)

    Google Scholar 

  7. Carreira, J., Noland, E., Banki-Horvath, A., Hillier, C., Zisserman, A.: A short note about kinetics-600. arXiv preprint arXiv:1808.01340 (2018)

  8. Chen, S., Huang, D.: Elaborative rehearsal for zero-shot action recognition. In: ICCV, pp. 13638–13647 (2021)

    Google Scholar 

  9. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR, pp. 248–255. IEEE (2009)

    Google Scholar 

  10. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  11. Fan, H., et al.: Multiscale vision transformers. In: ICCV, pp. 6824–6835 (2021)

    Google Scholar 

  12. Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recognition. In: ICCV, pp. 6202–6211 (2019)

    Google Scholar 

  13. Frome, A., et al.: Devise: a deep visual-semantic embedding model. In: NIPS, pp. 2121–2129 (2013)

    Google Scholar 

  14. Gao, J., Zhang, T., Xu, C.: I know the relationships: zero-shot action recognition via two-stream graph convolutional networks and knowledge graphs. In: AAAI, vol. 33, pp. 8303–8311 (2019)

    Google Scholar 

  15. Gao, P., et al.: Clip-adapter: better vision-language models with feature adapters. arXiv preprint arXiv:2110.04544 (2021)

  16. Ghosh, P., Saini, N., Davis, L.S., Shrivastava, A.: All about knowledge graphs for actions. arXiv preprint arXiv:2008.12432 (2020)

  17. Girdhar, R., Grauman, K.: Anticipative video transformer. In: ICCV (2021)

    Google Scholar 

  18. Herath, S., Harandi, M., Porikli, F.: Going deeper into action recognition: a survey. Image Vis. Comput. 60, 4–21 (2017)

    Article  Google Scholar 

  19. Jia, C., et al.: Scaling up visual and vision-language representation learning with noisy text supervision. In: ICML, pp. 4904–4916 (2021)

    Google Scholar 

  20. Ju, C., Han, T., Zheng, K., Zhang, Y., Xie, W.: Prompting visual-language models for efficient video understanding. In: CVPR (2022)

    Google Scholar 

  21. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: CVPR, pp. 1725–1732 (2014)

    Google Scholar 

  22. Kay, W., et al.: The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017)

  23. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: a large video database for human motion recognition. In: ICCV, pp. 2556–2563 (2011)

    Google Scholar 

  24. Li, K., et al.: Uniformer: unifying convolution and self-attention for visual recognition. In: ICLR (2022)

    Google Scholar 

  25. Li, Y., Ji, B., Shi, X., Zhang, J., Kang, B., Wang, L.: Tea: temporal excitation and aggregation for action recognition. In: CVPR, pp. 909–918 (2020)

    Google Scholar 

  26. Li, Y., et al.: Improved multiscale vision transformers for classification and detection. In: CVPR (2022)

    Google Scholar 

  27. Lin, J., Gan, C., Han, S.: TSM: temporal shift module for efficient video understanding. In: ICCV, pp. 7083–7093 (2019)

    Google Scholar 

  28. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: ICCV (2021)

    Google Scholar 

  29. Liu, Z., et al.: Video swin transformer. In: CVPR (2022)

    Google Scholar 

  30. Liu, Z., Wang, L., Wu, W., Qian, C., Lu, T.: TAM: temporal adaptive module for video recognition. In: ICCV, pp. 13708–13718 (2021)

    Google Scholar 

  31. Miech, A., Zhukov, D., Alayrac, J.B., Tapaswi, M., Laptev, I., Sivic, J.: HowTo100M: learning a text-video embedding by watching hundred million narrated video clips. In: ICCV, pp. 2630–2640 (2019)

    Google Scholar 

  32. Neimark, D., Bar, O., Zohar, M., Asselmann, D.: Video transformer network. arXiv preprint arXiv:2102.00719 (2021)

  33. Patrick, M., et al.: Keeping your eye on the ball: trajectory attention in video transformers. In: NIPS (2021)

    Google Scholar 

  34. Qin, J., et al.: Zero-shot action recognition with error-correcting output codes. In: CVPR, pp. 2833–2842 (2017)

    Google Scholar 

  35. Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-3D residual networks. In: ICCV, pp. 5533–5541 (2017)

    Google Scholar 

  36. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML (2021)

    Google Scholar 

  37. Rao, Y., et al.: DenseCLIP: language-guided dense prediction with context-aware prompting. In: CVPR (2022)

    Google Scholar 

  38. Romera-Paredes, B., Torr, P.: An embarrassingly simple approach to zero-shot learning. In: ICML, pp. 2152–2161 (2015)

    Google Scholar 

  39. Ryoo, M., Piergiovanni, A., Arnab, A., Dehghani, M., Angelova, A.: Tokenlearner: adaptive space-time tokenization for videos. In: NIPS, vol. 34 (2021)

    Google Scholar 

  40. Selva, J., Johansen, A.S., Escalera, S., Nasrollahi, K., Moeslund, T.B., Clapés, A.: Video transformers: a survey. arXiv preprint arXiv:2201.05991 (2022)

  41. Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)

  42. Sun, C., Baradel, F., Murphy, K., Schmid, C.: Learning video representations using contrastive bidirectional transformer. In: ECCV (2020)

    Google Scholar 

  43. Sun, C., Myers, A., Vondrick, C., Murphy, K., Schmid, C.: Videobert: a joint model for video and language representation learning. In: ICCV, pp. 7464–7473 (2019)

    Google Scholar 

  44. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: ICCV, pp. 4489–4497 (2015)

    Google Scholar 

  45. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: CVPR (2018)

    Google Scholar 

  46. Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 5998–6008 (2017)

    Google Scholar 

  47. Wang, L., et al.: Temporal segment networks: towards good practices for deep action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 20–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_2

    Chapter  Google Scholar 

  48. Wang, M., Xing, J., Liu, Y.: ActionCLIP: a new paradigm for video action recognition. arXiv preprint arXiv:2109.08472 (2021)

  49. Wang, Q., Chen, K.: Alternative semantic representations for zero-shot human action recognition. In: ECML PKDD, pp. 87–102 (2017)

    Google Scholar 

  50. Xie, S., Sun, C., Huang, J., Tu, Z., Murphy, K.: Rethinking spatiotemporal feature learning: speed-accuracy trade-offs in video classification. In: ECCV, pp. 305–321 (2018)

    Google Scholar 

  51. Xu, H., et al.: Videoclip: contrastive pre-training for zero-shot video-text understanding. In: EMNLP (2021)

    Google Scholar 

  52. Xu, X., Hospedales, T.M., Gong, S.: Multi-task zero-shot action recognition with prioritised data augmentation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 343–359. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_22

    Chapter  Google Scholar 

  53. Yan, S., et al.: Multiview transformers for video recognition. In: CVPR (2022)

    Google Scholar 

  54. Yuan, L., et al.: Florence: a new foundation model for computer vision. arXiv preprint arXiv:2111.11432 (2021)

  55. Zhang, B., et al.: Co-training transformer with videos and images improves action recognition. arXiv preprint arXiv:2112.07175 (2021)

  56. Zhang, L., Xiang, T., Gong, S.: Learning a deep embedding model for zero-shot learning. In: CVPR, pp. 2021–2030 (2017)

    Google Scholar 

  57. Zhang, R., et al.: Tip-adapter: training-free clip-adapter for better vision-language modeling. arXiv preprint arXiv:2111.03930 (2021)

  58. Zhang, R., et al.: Pointclip: point cloud understanding by clip. In: CVPR (2021)

    Google Scholar 

  59. Zhou, C., Loy, C.C., Dai, B.: Denseclip: extract free dense labels from clip. arXiv preprint arXiv:2112.01071 (2021)

  60. Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Learning to prompt for vision-language models. arXiv preprint arXiv:2109.01134 (2021)

  61. Zhu, L., Yang, Y.: Actbert: learning global-local video-text representations. In: CVPR, pp. 8746–8755 (2020)

    Google Scholar 

  62. Zhu, Y., et al.: A comprehensive study of deep video action recognition. arXiv preprint arXiv:2012.06567 (2020)

  63. Zhu, Y., Long, Y., Guan, Y., Newsam, S., Shao, L.: Towards universal representation for unseen action recognition. In: CVPR, pp. 9436–9445 (2018)

    Google Scholar 

Download references

Acknowledgements

This research was supported in part by the National Key Research and Development Program of China under Grant No. 2018AAA0100400, and the National Natural Science Foundation of China under Grants 61976208, 62071466 and 62076242, and the InnoHK project. HL was not supported by any fund for this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Houwen Peng or Gaofeng Meng .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 215 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ni, B. et al. (2022). Expanding Language-Image Pretrained Models for General Video Recognition. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13664. Springer, Cham. https://doi.org/10.1007/978-3-031-19772-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19772-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19771-0

  • Online ISBN: 978-3-031-19772-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics