Skip to main content

Comparing Statistical and Analytical Routing Approaches for Delay-Tolerant Networks

  • Conference paper
  • First Online:
Quantitative Evaluation of Systems (QEST 2022)

Abstract

In delay-tolerant networks (DTNs) with uncertain contact plans, the communication episodes and their reliabilities are known a priori. To maximize the end-to-end delivery probability, a bounded network-wide number of message copies are allowed. The resulting multi-copy routing optimization problem is naturally modelled as a Markov decision process with distributed information. The two state-of-the-art solution approaches are statistical model checking with scheduler sampling, and the analytical RUCoP algorithm based on probabilistic model checking. In this paper, we provide an in-depth comparison of the two approaches. We use an extensive benchmark set comprising random networks, scalable binomial topologies, and realistic ring-road low Earth orbit satellite networks. We evaluate the obtained message delivery probabilities as well as the computational effort. Our results show that both approaches are suitable tools for obtaining reliable routes in DTN, and expose a trade-off between scalability and solution quality.

Authors are ordered alphabetically. This work was supported by Agencia I\(+\)D\(+\)i grants PICT-2017-1335 and PICT-2017-3894 (RAFTSys), DFG grant 389792660 as part of TRR 248, the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement 101008233 (MISSION), NWO VENI grant 639.021.754, and SeCyT-UNC grant 33620180100354CB (ARES).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Nodes 1 and 7 correspond to nodes 8 and 15 in the contact plan used in [23].

References

  1. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model. Comput. Simul. 28(1), 6:1-6:39 (2018). https://doi.org/10.1145/3158668

    Article  MathSciNet  Google Scholar 

  2. Araniti, G., et al.: Contact graph routing in DTN space networks: overview, enhancements and performance. IEEE Comms. Mag. 53(3), 38–46 (2015). https://doi.org/10.1109/MCOM.2015.7060480

    Article  Google Scholar 

  3. Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model checking probabilistic systems. In: Handbook of Model Checking, pp. 963–999. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_28

    Chapter  MATH  Google Scholar 

  4. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  5. Benamar, N., Singh, K.D., Benamar, M., Ouadghiri, D.E., Bonnin, J.M.: Routing protocols in vehicular delay tolerant networks: a comprehensive survey. Comput. Commun. 48, 141–158 (2014). https://doi.org/10.1016/j.comcom.2014.03.024

    Article  Google Scholar 

  6. Benhamida, F.Z., Bouabdellah, A., Challal, Y.: Using delay tolerant network for the Internet of Things: Opportunities and challenges. In: 2017 8th International Conference on Information and Communication Systems (ICICS), pp. 252–257, April 2017. https://doi.org/10.1109/IACS.2017.7921980

  7. Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: An efficient statistical model checker for nondeterminism and rare events. Int. J. Softw. Tools Technol. Transf. 22(6), 759–780 (2020). https://doi.org/10.1007/s10009-020-00563-2

    Article  Google Scholar 

  8. Burleigh, S., Caini, C., Messina, J., Rodolfi, M.: Toward a unified routing framework for DTN. In: 2016 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE), pp. 82–86, Sept 2016

    Google Scholar 

  9. Burleigh, S., et al.: Delay-tolerant networking: an approach to interplanetary internet. Comm. Mag. 41(6), 128–136 (2003). https://doi.org/10.1109/MCOM.2003.1204759

    Article  Google Scholar 

  10. Caini, C., Cruickshank, H., Farrell, S., Marchese, M.: Delay- and disruption-tolerant networking (DTN): an alternative solution for future satellite networking applications. Proc. IEEE 99(11), 1980–1997 (2011). https://doi.org/10.1109/JPROC.2011.2158378

    Article  Google Scholar 

  11. Cerf, V., et al.: Delay-tolerant networking architecture. RFC 4838, RFC Editor, April 2007. http://www.rfc-editor.org/rfc/rfc4838.txt

  12. Cheung, L., Lynch, N.A., Segala, R., Vaandrager, F.W.: Switched PIOA: parallel composition via distributed scheduling. Theor. Comput. Sci. 365(1–2), 83–108 (2006). https://doi.org/10.1016/j.tcs.2006.07.033

    Article  MathSciNet  MATH  Google Scholar 

  13. Consultative Committee for Space Data Systems (CCSDS): CCSDS bundle protocol specification (blue book, recommended standard CCSDS 734.2-B-1), September 2015. https://public.ccsds.org/Pubs/734x2b1.pdf

  14. D’Argenio, P.R., Fraire, J.A., Hartmanns, A., Raverta, F.: Comparing statistical and analytical routing approaches for delay-tolerant networks (artifact). 4TU.ResearchData (2022). https://doi.org/10.4121/20334687

  15. D’Argenio, P., Legay, A., Sedwards, S., Traonouez, L.-M.: Smart sampling for lightweight verification of Markov decision processes. Int. J. Softw. Tools Technol. Transf. 17(4), 469–484 (2015). https://doi.org/10.1007/s10009-015-0383-0

    Article  Google Scholar 

  16. Dehnert, C., Junges, S., Katoen, JP., Volk, M.: A STORM is coming: a modern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds) CAV 2017. LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9_31

  17. D’Argenio, P.R., Fraire, J.A., Hartmanns, A.: Sampling distributed schedulers for resilient space communication. In: Lee, R., Jha, S., Mavridou, A., Giannakopoulou, D. (eds.) NFM 2020. LNCS, vol. 12229, pp. 291–310. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55754-6_17

    Chapter  Google Scholar 

  18. Fall, K.: A delay-tolerant network architecture for challenged internets. In: Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, SIGCOMM 2003, pp. 27–34. ACM, New York (2003). https://doi.org/10.1145/863955.863960

  19. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer-Verlag, Heidelberg (1996). https://doi.org/10.1007/978-1-4612-4054-9

    Book  MATH  Google Scholar 

  20. Fraire, J., Gasparini, E.: Centralized and decentralized routing solutions for present and future space information networks. IEEE communication Magazine, SI on Space Information Networks: Technological Challenges, Design Issues and Solutions (2021, in Press)

    Google Scholar 

  21. Fraire, J.A., Feldmann, M., Burleigh, S.C.: Benefits and challenges of cross-linked ring road satellite networks: a case study. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–7 (2017)

    Google Scholar 

  22. Fraire, J.A., Finochietto, J.M.: Design challenges in contact plans for disruption-tolerant satellite networks. IEEE Commun. Mag. 53(5), 163–169 (2015). https://doi.org/10.1109/MCOM.2015.7105656

    Article  Google Scholar 

  23. Fraire, J.A., et al.: Assessing contact graph routing performance and reliability in distributed satellite constellations. Hindawi J. Comput. Netw. Commun. (2017). https://doi.org/10.1155/2017/2830542

    Article  Google Scholar 

  24. Fraire, J.A., De Jonckère, O., Burleigh, S.C.: Routing in the space internet: a contact graph routing tutorial. J. Netw. Comput. Appl. 174, 102884 (2021). https://doi.org/10.1016/j.jnca.2020.102884

    Article  Google Scholar 

  25. Giro, S.: On the Automatic Verification of Distributed Probabilistic Automata with Partial Information. Ph.D. thesis, Universidad Nacional de Córdoba, Argentina (2010)

    Google Scholar 

  26. Giro, S., D’Argenio, P.R., Fioriti, L.M.F.: Distributed probabilistic input/output automata: expressiveness, (un)decidability and algorithms. Theor. Comput. Sci. 538, 84–102 (2014). https://doi.org/10.1016/j.tcs.2013.07.017

    Article  MathSciNet  MATH  Google Scholar 

  27. Gupta, L., Jain, R., Vaszkun, G.: Survey of important issues in UAV communication networks. IEEE Commun. Surv. Tutor. 18(2), 1123–1152 (2015)

    Article  Google Scholar 

  28. Haddad, S., Monmege, B.: Interval iteration algorithm for MDPs and IMDPs. Theor. Comput. Sci. 735, 111–131 (2018). https://doi.org/10.1016/j.tcs.2016.12.003

    Article  MathSciNet  MATH  Google Scholar 

  29. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.P.: A compositional modelling and analysis framework for stochastic hybrid systems. Formal Methods Syst. Des. 43(2), 191–232 (2013). https://doi.org/10.1007/s10703-012-0167-z

    Article  MATH  Google Scholar 

  30. Hartmanns, A., Hermanns, H.: The Modest Toolset: an integrated environment for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_51

    Chapter  Google Scholar 

  31. Hartmanns, A., Kaminski, B.L.: Optimistic value iteration. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020, Part II. LNCS, vol. 12225, pp. 488–511. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53291-8_26

    Chapter  Google Scholar 

  32. Hom, J., Good, L., Yang, S.: A survey of social-based routing protocols in delay tolerant networks. In: 2017 International Conference on Computing, Networking and Communications (ICNC), pp. 788–792, January 2017. https://doi.org/10.1109/ICCNC.2017.7876231

  33. Hwang, C., Tillman, F.A., Lee, M.: System-reliability evaluation techniques for complex/large systems: a review. IEEE Trans. Reliab. 30(5), 416–423 (1981)

    Article  Google Scholar 

  34. Jenkins, A., Kuzminsky, S., Gifford, K.K., Pitts, R.L., Nichols, K.: DTN: flight test results from the international space station. In: 2010 IEEE Aerospace Conference, pp. 1–8, March 2010

    Google Scholar 

  35. Kalaputapu, R., Demetsky, M.J.: Modeling schedule deviations of buses using automatic vehicle-location data and artificial neural networks. In: Transportation Research Record, pp. 44–52 (1995)

    Google Scholar 

  36. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_47

    Chapter  Google Scholar 

  37. Legay, A., Sedwards, S., Traonouez, L.-M.: Scalable verification of Markov decision processes. In: Canal, C., Idani, A. (eds.) SEFM 2014. LNCS, vol. 8938, pp. 350–362. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15201-1_23

    Chapter  Google Scholar 

  38. Madoery, P., Raverta, F., Fraire, J., Finochietto, J.: On the performance analysis of disruption tolerant satellite networks under uncertainties. In: Proceedings of the 2017 XVII RPIC Workshop, September 2017

    Google Scholar 

  39. Madoery, P.G., Raverta, F.D., Fraire, J.A., Finochietto, J.M.: Routing in space delay tolerant networks under uncertain contact plans. In: 2018 IEEE International Conference on Communications (ICC), pp. 1–6, May 2018. https://doi.org/10.1109/ICC.2018.8422917

  40. Partan, J., Kurose, J., Levine, B.N.: A survey of practical issues in underwater networks. SIGMOBILE Mob. Comput. Commun. Rev. 11(4), 23–33 (2007). https://doi.org/10.1145/1347364.1347372

    Article  Google Scholar 

  41. Pöttner, W.B., Morgenroth, J., Schildt, S., Wolf, L.: Performance comparison of DTN bundle protocol implementations. In: Proceedings of the 6th ACM Workshop on Challenged Networks, pp. 61–64. ACM (2011)

    Google Scholar 

  42. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1st edn. Wiley, New York (1994)

    Book  Google Scholar 

  43. Quatmann, T., Katoen, J.-P.: Sound value iteration. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018, Part I. LNCS, vol. 10981, pp. 643–661. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3_37

    Chapter  Google Scholar 

  44. Raverta, F.D., Demasi, R., Madoery, P.G., Fraire, J.A., Finochietto, J.M., D’Argenio, P.R.: A Markov decision process for routing in space DTNs with uncertain contact plans. In: 2018 6th IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE), pp. 189–194, December2018. https://doi.org/10.1109/WiSEE.2018.8637330

  45. Raverta, F.D., Fraire, J.A., Madoery, P.G., Demasi, R.A., Finochietto, J.M., D’Argenio, P.R.: Routing in delay-tolerant networks under uncertain contact plans. Ad Hoc Netw. 123, 102663 (2021). https://doi.org/10.1016/j.adhoc.2021.102663

    Article  Google Scholar 

  46. Sahai, A., Tandra, R., Mishra, S.M., Hoven, N.: Fundamental design tradeoffs in cognitive radio systems. In: Proceedings of the First International Workshop on Technology and Policy for Accessing Spectrum, p. 2. ACM (2006)

    Google Scholar 

  47. Scott, K., Burleigh, S.: Bundle protocol specification. RFC 5050, RFC Editor, November 2007. http://www.rfc-editor.org/rfc/rfc5050.txt

  48. Wyatt, J., Burleigh, S., Jones, R., Torgerson, L., Wissler, S.: Disruption tolerant networking flight validation experiment on NASA’s EPOXI mission. In: First International Conference on Advances in Satellite and Space Communications, 2009. SPACOMM 2009, pp. 187–196, July 2009. https://doi.org/10.1109/SPACOMM.2009.39

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnd Hartmanns .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

D’Argenio, P.R., Fraire, J.A., Hartmanns, A., Raverta, F. (2022). Comparing Statistical and Analytical Routing Approaches for Delay-Tolerant Networks. In: Ábrahám, E., Paolieri, M. (eds) Quantitative Evaluation of Systems. QEST 2022. Lecture Notes in Computer Science, vol 13479. Springer, Cham. https://doi.org/10.1007/978-3-031-16336-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16336-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16335-7

  • Online ISBN: 978-3-031-16336-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics