Skip to main content

Sampling Distributed Schedulers for Resilient Space Communication

  • Conference paper
  • First Online:
NASA Formal Methods (NFM 2020)

Abstract

We consider routing in delay-tolerant networks like satellite constellations with known but intermittent contacts, random message loss, and resource-constrained nodes. Using a Markov decision process model, we seek a forwarding strategy that maximises the probability of delivering a message given a bound on the network-wide number of message copies. Standard probabilistic model checking would compute strategies that use global information, which are not implementable since nodes can only act on local data. In this paper, we propose notions of distributed schedulers and good-for-distributed-scheduling models to formally describe an implementable and practically desirable class of strategies. The schedulers consist of one sub-scheduler per node whose input is limited to local information; good models additionally render the ordering of independent steps irrelevant. We adapt the lightweight scheduler sampling technique in statistical model checking to work for distributed schedulers and evaluate the approach, implemented in the Modest Toolset, on a realistic satellite constellation and contact plan.

The authors are listed alphabetically. This work was supported by ANPCyT PICT-2017-3894 (RAFTSys), ERC grant 695614 (POWVER), NWO VENI grant no. 639.021.754, and SeCyT project 33620180100354CB (ARES).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The abstraction underapproximates contacts (it may only remove or shorten communication opportunities), so a strategy for the abstract plan is always implementable.

References

  1. AGI Systems Tool Kit (STK). http://www.agi.com/STK

  2. de Alfaro, L.: The verification of probabilistic systems under memory less partial information policies is hard. In: 2nd International Workshop on Probabilistic Methods in Verification, pp. 19–32. Technical report CSR-99-8, University of Birmingham (1999)

    Google Scholar 

  3. de Alfaro, L., Henzinger, T.A., Jhala, R.: Compositional methods for probabilistic systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 351–365. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44685-0_24

    Chapter  Google Scholar 

  4. Alvarez, J., Walls, B.: Constellations, clusters, and communication technology: expanding small satellite access to space. In: 2016 IEEE Aerospace Conference, pp. 1–11 (2016). https://doi.org/10.1109/AERO.2016.7500896

  5. Araniti, G., et al.: Contact graph routing in DTN space networks: overview, enhancements and performance. IEEE Commun. Mag. 53(3), 38–46 (2015). https://doi.org/10.1109/MCOM.2015.7060480

    Article  Google Scholar 

  6. Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model checking probabilistic systems. Handbook of Model Checking, pp. 963–999. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_28

    Chapter  MATH  Google Scholar 

  7. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  8. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60692-0_70

    Chapter  MATH  Google Scholar 

  9. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.P.: MoDeST: a compositional modeling formalism for hard and softly timed systems. IEEE Trans. Soft. Eng. 32(10), 812–830 (2006). https://doi.org/10.1109/TSE.2006.104

    Article  Google Scholar 

  10. Brázdil, T., Chatterjee, K., Chmelík, M., Fellner, A., Křetínský, J.: Counterexample explanation by learning small strategies in Markov decision processes. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 158–177. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_10

    Chapter  Google Scholar 

  11. Brázdil, T.: Verification of Markov decision processes using learning algorithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 98–114. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6_8

    Chapter  Google Scholar 

  12. Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: A statistical model checker for nondeterminism and rare events. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 340–358. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89963-3_20

    Chapter  Google Scholar 

  13. Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: An efficient statistical model checker for nondeterminism and rare events. STTT (2020, under review). http://www.modestchecker.net/Publications/PDF/BDHS20-prelim.pdf

  14. Budde, C.E.: JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5_9

    Chapter  Google Scholar 

  15. Burleigh, S.: Interplanetary overlay network: an implementation of the DTN bundle protocol. In: 4th IEEE Consumer Communications and Networking Conference, pp. 222–226 (2007). https://doi.org/10.1109/CCNC.2007.51

  16. Burleigh, S.: Delay-tolerant networking: an approach to interplanetary Internet. IEEE Commun. Mag. 41(6), 128–136 (2003). https://doi.org/10.1109/MCOM.2003.1204759

    Article  Google Scholar 

  17. Caini, C., Firrincieli, R.: Application of contact graph routing to LEO satellite DTN communications. In: 2012 IEEE International Conference on Communications (ICC), pp. 3301–3305 (2012). https://doi.org/10.1109/ICC.2012.6363686

  18. Calin, G., Crouzen, P., D’Argenio, P.R., Hahn, E.M., Zhang, L.: Time-bounded reachability in distributed input/output interactive probabilistic chains. In: van de Pol, J., Weber, M. (eds.) SPIN 2010. LNCS, vol. 6349, pp. 193–211. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16164-3_15

    Chapter  Google Scholar 

  19. Cerf, V., et al.: Delay-tolerant networking architecture. RFC 4838, RFC Editor (April 2007). http://www.rfc-editor.org/rfc/rfc4838.txt

  20. Chen, J., Xu, J.: Sampling adaptively using the Massart inequality for scalable learning. In: 12th International Conference on Machine Learning and Applications (ICMLA), pp. 362–367. IEEE (2013). https://doi.org/10.1109/ICMLA.2013.149

  21. Cheung, L., Lynch, N., Segala, R., Vaandrager, F.: Switched probabilistic i/o automata. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 494–510. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31862-0_35

    Chapter  Google Scholar 

  22. D’Argenio, P., Legay, A., Sedwards, S., Traonouez, L.M.: Smart sampling for lightweight verification of Markov decision processes. STTT 17(4), 469–484 (2015). https://doi.org/10.1007/s10009-015-0383-0

    Article  Google Scholar 

  23. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B.: Uppaal SMC tutorial. STTT 17(4), 397–415 (2015). https://doi.org/10.1007/s10009-014-0361-y

    Article  Google Scholar 

  24. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A Storm is coming: a modern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9_31

    Chapter  Google Scholar 

  25. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification techniques for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21455-4_3

    Chapter  Google Scholar 

  26. Foust, J.: SpaceX’s space-Internet woes: despite technical glitches, the company plans to launch the first of nearly 12,000 satellites in 2019. IEEE Spectr. 56(1), 50–51 (2019). https://doi.org/10.1109/MSPEC.2019.8594798

    Article  Google Scholar 

  27. Fraire, J.A.: Introducing contact plan designer: a planning tool for DTN-based space-terrestrial networks. In: 6th International Conference on Space Mission Challenges for Information Technology (SMC-IT), pp. 124–127 (2017). https://doi.org/10.1109/SMC-IT.2017.28

  28. Fraire, J.A., Burleigh, S., Finochietto, J.M.: Disruption-Tolerant Satellite Networks. ArtechHouse (2017)

    Google Scholar 

  29. Fraire, J.A., et al.: Assessing contact graph routing performance and reliability in distributed satellite constellations. Hindawi J. Comput. Netw. Commun. 2017, 18 p. (2017). Article ID 2830542. https://doi.org/10.1155/2017/2830542

  30. Fraire, J.A., Madoery, P.G., Finochietto, J.M.: On the design and analysis of fair contact plans in predictable delay-tolerant networks. IEEE Sens. J. 14(11), 3874–3882 (2014). https://doi.org/10.1109/JSEN.2014.2348917

    Article  Google Scholar 

  31. Fraire, J.A., Nies, G., Gerstacker, C., Hermanns, H., Bay, K., Bisgaard, M.: Battery-aware contact plan design for LEO satellite constellations: the Ulloriaq case study. IEEE Trans. Green Commun. Netw. (2019). https://doi.org/10.1109/TGCN.2019.2954166

    Article  Google Scholar 

  32. Fraire, J.A., Finochietto, J.M.: Design challenges in contact plans for disruption-tolerant satellite networks. IEEE Commun. Mag. 53(5), 163–169 (2015). https://doi.org/10.1109/MCOM.2015.7105656

    Article  Google Scholar 

  33. Fraire, J.A., Finochietto, J.M.: Routing-aware fair contact plan design for predictable delay tolerant networks. Ad Hoc Netw. 25, 303–313 (2015). New Research Challenges in Mobile, Opportunistic and Delay-Tolerant Networks Energy-Aware Data Centers: Architecture, Infrastructure, and Communication. https://doi.org/10.1016/j.adhoc.2014.07.006

  34. Fraire, J.A., Madoery, P.G., Finochietto, J.M., Leguizamón, G.: An evolutionary approach towards contact plan design for disruption-tolerant satellite networks. Appl. Soft Comput. 52, 446–456 (2017). https://doi.org/10.1016/j.asoc.2016.10.023

    Article  Google Scholar 

  35. Giro, S., D’Argenio, P.R.: Quantitative model checking revisited: neither decidable nor approximable. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 179–194. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75454-1_14

    Chapter  Google Scholar 

  36. Giro, S., D’Argenio, P.R.: On the expressive power of schedulers in distributed probabilistic systems. Electr. Notes Theor. Comput. Sci. 253(3), 45–71 (2009). https://doi.org/10.1016/j.entcs.2009.10.005

    Article  Google Scholar 

  37. Giro, S., D’Argenio, P.R., Ferrer Fioriti, L.M.: Partial order reduction for probabilistic systems: a revision for distributed schedulers. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 338–353. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04081-8_23

    Chapter  Google Scholar 

  38. Giro, S., Rabe, M.N.: Verification of partial-information probabilistic systems using counterexample-guided refinements. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, pp. 333–348. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33386-6_26

    Chapter  MATH  Google Scholar 

  39. Gottzein, E.: Challenges in the control and autonomy of communications satellites. Control Eng. Pract. 8(4), 409–427 (2000). https://doi.org/10.1016/S0967-0661(99)00171-9

    Article  Google Scholar 

  40. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.P.: A compositional modelling and analysis framework for stochastic hybrid systems. Formal Meth. Syst. Des. 43(2), 191–232 (2013). https://doi.org/10.1007/s10703-012-0167-z

    Article  MATH  Google Scholar 

  41. Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasMc: a web-based probabilistic model checker. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 312–317. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06410-9_22

    Chapter  Google Scholar 

  42. Hartmanns, A.: Sampling distributed schedulers for resilient space communication (artifact). 4TU.Centre for Research Data (2020). https://doi.org/10.4121/uuid:6aa24e1a-3551-4073-b533-4ba6e408212d

  43. Hartmanns, A., Hermanns, H.: The Modest Toolset: an integrated environment for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_51

    Chapter  Google Scholar 

  44. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 73–84. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0_8

    Chapter  MATH  Google Scholar 

  45. Jenkins, A., Kuzminsky, S., Gifford, K.K., Pitts, R.L., Nichols, K.: DTN: flight test results from the international space station. In: 2010 IEEE Aerospace Conference, pp. 1–8 (2010)

    Google Scholar 

  46. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_47

    Chapter  Google Scholar 

  47. Lassaigne, R., Peyronnet, S.: Probabilistic verification and approximation. Ann. Pure Appl. Logic 152(1–3), 122–131 (2008). https://doi.org/10.1016/j.apal.2007.11.006

    Article  MathSciNet  MATH  Google Scholar 

  48. Legay, A., Sedwards, S., Traonouez, L.-M.: Scalable verification of Markov decision processes. In: Canal, C., Idani, A. (eds.) SEFM 2014. LNCS, vol. 8938, pp. 350–362. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15201-1_23

    Chapter  Google Scholar 

  49. Madoery, P.G., Raverta, F.D., Fraire, J.A., Finochietto, J.M.: Routing in space delay tolerant networks under uncertain contact plans. In: 2018 IEEE International Conference on Communications (ICC), May 2018, pp. 1–6 (2018). https://doi.org/10.1109/ICC.2018.8422917

  50. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. Wiley, Hoboken (1994)

    Book  Google Scholar 

  51. Raverta, F.D., Demasi, R., Madoery, P.G., Fraire, J.A., Finochietto, J.M., D’Argenio, P.R.: A Markov decision process for routing in space DTNs with uncertain contact plans. In: 6th IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE), pp. 189–194. IEEE (2018). https://doi.org/10.1109/WiSEE.2018.8637330

  52. Sahai, A., Tandra, R., Mishra, S.M., Hoven, N.: Fundamental design tradeoffs in cognitive radio systems. In: Proceedings of the 1st International Workshop on Technology and Policy for Accessing Spectrum, p. 2. ACM (2006)

    Google Scholar 

  53. Sheng, M., Xu, G., Fang, X.: The routing of interplanetary Internet. China Commun. 3(6), 63–73 (2006)

    Google Scholar 

  54. Wyatt, J., Burleigh, S., Jones, R., Torgerson, L., Wissler, S.: Disruption tolerant networking flight validation experiment on NASA’s EPOXI mission. In: First International Conference on Advances in Satellite and Space Communications (SPACOMM), pp. 187–196 (2009). https://doi.org/10.1109/SPACOMM.2009.39

  55. Younes, H.L.S., Clarke, E.M., Zuliani, P.: Statistical verification of probabilistic properties with unbounded until. In: Davies, J., Silva, L., Simao, A. (eds.) SBMF 2010. LNCS, vol. 6527, pp. 144–160. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19829-8_10

    Chapter  Google Scholar 

  56. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 223–235. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0_17

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnd Hartmanns .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

D’Argenio, P.R., Fraire, J.A., Hartmanns, A. (2020). Sampling Distributed Schedulers for Resilient Space Communication. In: Lee, R., Jha, S., Mavridou, A., Giannakopoulou, D. (eds) NASA Formal Methods. NFM 2020. Lecture Notes in Computer Science(), vol 12229. Springer, Cham. https://doi.org/10.1007/978-3-030-55754-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55754-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55753-9

  • Online ISBN: 978-3-030-55754-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics