Skip to main content

Basil (Ocimum basilicum L.): Botany, Genetic Resource, Cultivation, Conservation, and Stress Factors

  • Chapter
  • First Online:
Sustainable Agriculture in the Era of the OMICs Revolution

Abstract

Basil or sweet basil is named Ocimum basilicum L. from the Lamiaceae family, which originated from India, and it is also well known as a culinary herb in other countries such as Italy, Thailand, Vietnam, and Taiwan. Agricultural systems (traditional or alternative agricultural systems) have a different effect on the morphology, yield, and yield components of basil. These agricultural systems include aquaponics and hydroponics systems and organic farming by using organic manure as vermicompost, poultry or cattle manure, biofertilizer, growing techniques, etc., as well as chemical fertilizer. Fertilization, especially organic and chemical fertilizer, combined with minerals, applied in appropriate dose and composition, affects growth, herb weight, and basil inorganic matter content. In this context, the management of the fertilizers is a significant factor to obtain successful basil cultivation and sustainable agriculture. So, the best agricultural system and growing condition should be determined to obtain the maximum yield values in basil. In this chapter, botany, distribution, origin, domestication, spread, genetic resource, collection, conservation, characterization, and evaluation (different agricultural systems, fertilizer application, genetic variability and morphology, and yield properties) will be covered in detail and provide information for basil producers and researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Fattah, G. M., & Asrar, A. A. (2012). Arbuscular mycorrhizal fungal application to improve growth and tolerance of wheat (Triticum aestivum L.) plants grown in saline soil. Acta Physiologiae Plantarum, 166, 268–281.

    Google Scholar 

  • Abduelrahman, A. H. N., Elhussein, S. A., Osman, N. A., & Nour, A. H. (2009). Morphological variability and chemical composition of essentials oils from nineteen varieties of basil (Ocimum basilicum L.) growing in Sudan. International Journal of Chemical Technology, 1(1), 1–10.

    Article  CAS  Google Scholar 

  • Agarwal, C., Sharma, N. L., & Gaurav, S. S. (2013). An analysis of basil (Ocimum sp.) to study the mor-phological variability. Indian Journal of Fundamental and Applied Life Sciences, 3, 521–525.

    Google Scholar 

  • Agüero-Fernández, M. Y. M., Hernándezmontiel, L. G., Murillo-Amador, B., Mazónsuásteguı, J. M. C., Ojeda-Silvera, M., & Batista-Sánchez, D. (2019). Morpho-physiological characteristics of basil (Ocimum basilicum L.) under NaCl-stress and Rhizophagus fasciculatum as NaCl-stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(4), 1285–1292.

    Article  Google Scholar 

  • Akbari, G. A., Soltani, E., Amini, F., & Binesh, S. (2018). Cold tolerance, productivity and phytochemical diversity in sweet basil (Ocimum basilicum L.) accession. Industrial Crops and Products, 124, 677–684.

    Article  CAS  Google Scholar 

  • Al-Karaki, G. N. (2006). Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Scientia Horticulturae, 109(1), 1–7.

    Article  Google Scholar 

  • Al-mansour, B., Kalaivanan, D., Suryanarayana, M. A., Umesha, K., & Nair, A. K. (2018). Influence of organic and inorganic fertilizers on yield and quality of sweet basil (Ocimum basilicum L.). Journal of Spices and Aromatic Crops, 27(1), 38–44.

    Google Scholar 

  • Al-maskri, A. Y., Khan, M. M., & Khan, S. H. (2013). Genetic diversity among omani basil (Ocimum basilicum L.) landraces using RAPD markers. Journal of Agricultural Research and Development, 3(6), 094–097.

    Google Scholar 

  • Allen, E. B., & Cunningham, G. L. (1983). Effects of vesicular mycorrhiza on Distichlis spicata under three salinity levels. New Phytologist, 93, 227–236.

    Google Scholar 

  • Alves, R. P., Silva, A. V. C., Almeida, C. S., Costa, T. S., Álvares-Carvalho, S. V., Arrigoni-Blank, M. F., & Blank, A. F. (2019). Genetic divergence in basil cultivars and hybrids. Horticultura Brasileira, 37(2), 180–187.

    Google Scholar 

  • Angooti, F., & Nourafcan, H. (2015). Effects of application method and level of Salicylic acid on some morphological characteristics of Ocimum basilicum L. leaves under sodium chloride salinity stress. Biological Forum, 7(1), 346.

    Google Scholar 

  • Anwar, M., Patra, D. D., Chand, S., Alpesh, K., Naqvi, A., & Khanuja, S. P. S. (2005). Effect of organic manures and inorganic fertilizer on growth, herb and oil yield, nutrient accumulation, and oil quality of French basil. Communications in Soil Science and Plant Analysis, 36, 1737–1746.

    Article  CAS  Google Scholar 

  • Arabaci, O., & Bayram, E. (2004). The effect of nitrogen fertilization and different plant densities on some agronomic and technologic characteristic of Ocimum basilicum L. (Basil). Journal of Agronomy, 3(4), 255–262.

    Article  Google Scholar 

  • Asgharipour, M. R., & Armin, M. (2010). Growth and elemental accumulation of tomato seedlings grown in composted solid waste soil amended. American-Eurasian Journal of Sustainable Agriculture, 4(1), 94–101.

    Google Scholar 

  • Asgharipour, M. R., & Rafiei, M. (2011a). Effect of different organic amendments and drought on the growth and yield of basil in the greenhouse. Advances in Environmental Biology, 5(6), 1233–1239.

    Google Scholar 

  • Asgharipour, M. R., & Rafiei, M. (2011b). The effects of land use on biomass and catabolic diversity of soil microbial communities. African Journal of Agricultural Research, 6(19), 4607–4612.

    Google Scholar 

  • Asrar, A. A., Abdel-Fattah, G. M., Elhindi, K. M., & Abdel-Salam, A. (2014). The impact of arbuscular mychorrhizal fungi in improving growth, flower yield and tolerance of kalanchoe (Kalanchoe blossfeldiana Poelin) plants grown in NaCl-stress conditions. Food, Agriculture and Environment, 12, 105–112.

    CAS  Google Scholar 

  • Attia, H., Ouhibi, C., Ellili, A., Msilini, N., Bouzaien, G., Karray, N., & Lachaal, M. (2021). Analysis of salinity effects on basil leaf surface area, photosynthetic activity, and growth. Acta Physiologiae Plantarum, 33, 823–833.

    Article  Google Scholar 

  • Barfi, A., Nazem, H., Saeidi, I., Peyrovi, M., Afsharzadeh, M., Barfi, B., & Salavati, H. (2016). In-syringe reversed dispersive liquid-liquid microextraction for the evaluation of three important bioactive compounds of basil, tarragon and fennel in human plasma and urine samples. Journal of Pharmaceutical and Biomedical Analysis, 121, 123–134.

    Article  CAS  Google Scholar 

  • Bekhradi, F., Delshad, M., Marín, A., Luna, M. C., Garrido, Y., Kashi, A., & Gil, M. I. (2015). Effects of salt stress on physiological and postharvest quality characteristics of different Iranian genotypes of basil. Horticulture, Environment and Biotechnology, 56(6), 777–785.

    Article  CAS  Google Scholar 

  • Ben Taarit, M., Msaada, K., Hosni, K., Hammami, M., Kchouk, M. E., & Marzouk, B. (2009). Plant growth, essential oil yield and composition of sage (Salvia officinalis L.) fruits cultivated under salt stress conditions. Industrial Crops and Products, 30, 333–337.

    Article  CAS  Google Scholar 

  • Bernstein, N., Sela, S., Dudai, N., & Gorbatsevich, E. (2017). Salinity stress does not affect root uptake, dissemination and persistence of Salmonella in sweet-basil (Ocimum basilicum). Frontiers in Plant Science, 8.

    Google Scholar 

  • Biesiada, A., & Kuś, A. (2010). The effect of nitrogen fertilization and irrigation on yielding and nutritional status of sweet basil (Ocimum basilicum L.). Acta Scientiarum Polonorum Hortorum Cultus, 9(2), 3–12.

    Google Scholar 

  • Biswasa, S., Koulb, M., & Bhatnagara, A. K. (2011). Effect of salt, drought and metal stress on essential oil yield and quality in plants. Natural Product Communications, 6(10), 1559–1564.

    Google Scholar 

  • Bittsanszky, A., Uzinger, N., Gyulai, G., Mathis, A., Junge, R., Kotzen, B., & Komives, T. (2016). Nutrient supply of plants in aquaponic systems. Ecocycles, 2, 17–20.

    Article  Google Scholar 

  • Blank, A. F., de Carvalho Filho, J. L. S., dos Santos Neto, A. L., Alves, P. B., Arrigoni-Blank, M. F., Silva-Mann, R., & Mendonça, M. C. (2004). Morphologic and agronomic characterization of basil accessions. Horticultura Brasileira, 22(1), 113–116.

    Article  Google Scholar 

  • Bulgari, R., Baldi, A., Ferrante, A., & Lenzi, A. (2017). Yield and quality of basil, Swiss chard, and rocket microgreens grown in a hydroponic system. New Zealand Journal of Crop and Horticultural Science, 45(2), 119–129. https://doi.org/10.1080/01140671.2016.1259642

    Article  Google Scholar 

  • Camlica, M., & Yaldiz, G. (2017). Effect of salt stress on seed germination, shoot and root length in basil (Ocimum basilicum). International Journal of Secondary Metabolite, 4(3), 69–76.

    Article  Google Scholar 

  • Carlsen, M. H., Blomhoff, R., & Andersen, L. F. (2011). Intakes of culinary herbs and spices from a food frequency questionnaire evaluated against 28-days estimated records. Nutrition Journal, 10(50), 1–6.

    Google Scholar 

  • Carović-Stanko, K., Orlić, S., Politeo, O., Strikić, F., Kolak, I., Milos, M., & Satovic, Z. (2010). Composition and antibacterial activities of essential oils of seven Ocimum taxa. Food Chemistry, 19(1), 196–201.

    Article  Google Scholar 

  • Carović-Stanko, K., Liber, Z., Politeo, O., Strikic, F., Kolak, I., Milos, M., & Satović, Z. (2011). Molecular and chemical characterization of the most widespread Ocimum species. Plant Systematic Evoluation, 294, 253–262.

    Article  Google Scholar 

  • Chalchat, J. C., & Özcan, M. M. (2008). Comparative essential oil composition of flowers, leaves and stems of basil (Ocimum basilicum L.) used as herb. Food Chemistry, 110(2), 501–503.

    Article  CAS  Google Scholar 

  • Chang, X., Alderson, P., & Wright, C. (2005). Effect of temperature integration on the growth and volatile oil content of basil (Ocimum basilicum L.). The Journal of Horticultural Science and Biotechnology, 80, 593–598.

    Article  CAS  Google Scholar 

  • Charles, D. J., Joly, R. J., & Simon, J. E. (1990). Effect of osmotic stress on the essential oil content and composition of peppermint. Hytochemistry, 29, 2837–2284.

    Article  CAS  Google Scholar 

  • Chen, H., & Jiang, J. G. (2010). Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environmental Reviews, 18, 309–319.

    Article  Google Scholar 

  • Choi, J. Y., Heo, S., Bae, S., Kim, J., & Moon, K. D. (2020). Discriminating the origin of basil seeds (Ocimum basilicum L.) using hyperspectral imaging analysis. LWT-food. Science and Technology, 118, 108715.

    CAS  Google Scholar 

  • Chowdhury, T., Mandal, A., Roy, S. C., & Sarker, D. D. (2017). Diversity of the genus Ocimum (Lamiaceae) through morpho-molecular (RAPD) and chemical (GC-MS) analysis. Journal, Genetic Engineering & Biotechnology, 15(1), 275–286.

    Article  Google Scholar 

  • Daei, G., Ardekani, M. R., Rejali, F., Teimuri, S., & Miransari, M. (2009). Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. Plant Physiology, 166, 617–625.

    Article  CAS  Google Scholar 

  • Daneshian, A., Gurbuz, B., Cosge, B., & Ipek, A. (2009). Chemical components of essential oils from basil (Ocimum basilicum L.) grown at different nitrogen levels. International Journal of Natural and Engineering Sciences, 3(3), 8–12.

    Google Scholar 

  • Darrah, H. H. (1972). The basils in folklore and biological science. The Herbalist, 38, 3–10.

    Google Scholar 

  • Darrah, H. (1980). The cultivated basils. Thomas Buckeye.

    Google Scholar 

  • Davis, J. M. (1997). Basil. Misc. Publ. North Carolina cooperative extension service, North Carolina State University. http://www.ces.ncsu.edu/depts/hort/hil/hil-125.html, 5/8/98

  • De Masi, L., Siviero, P., Esposito, C., Castaldo, D., Siano, F., & Laratta, B. (2006). Assessment of agronomic, chemical and genetic variability in common basil (Ocimum basilicum L.). European Food Research and Technology, 223, 273–281.

    Article  Google Scholar 

  • Delavari, M., Enteshari, S., & Kalantari, K. M. (2014). Effects of response of Ocimum basilicum to the interactive effect of salicylic acid and salinity stress. Iranian Journal of Plant Physiology, 4, 983–990.

    Google Scholar 

  • Diver, S., & Rinehart, L. (2010). Aquaponics-integration of hydroponics with aquaculture (28p). Fayetteville.

    Google Scholar 

  • Dzida, K. (2010a). Biological value and essential oil content in sweet basil (Ocimum basilicum L.) depending on calcium fertilization and cultivar. Acta Scientiarum Polonorum Hortorum Cultus, 9(4), 153–161.

    Google Scholar 

  • Dzida, K. (2010b). Nutrients contents in sweet basil (Ocimum basilicum L.) herb depending on calcium carbonate dose and cultivar. Acta Scientiarum Polonorum Hortorum Cultus, 9(4), 143–151.

    Google Scholar 

  • Egata, D. F., Geja, W., & Mengesha, B. (2017). Agronomic and bio-chemical variability of Ethiopian sweet basil (Ocimum basilicum L.) accessions. Academic Research Journal of Agricultural Science and Research, 5(7), 489–508.

    Google Scholar 

  • Elhindi, K. M., El-Din, A. S., & Elgorban, A. M. (2017). The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saudi Journal of Biological Sciences, 24(1), 170–179.

    Article  CAS  Google Scholar 

  • El-Naggar, A. H. M., Hassan, M. R. A., Shaban, E. H., & Mohamed, M. E. A. (2015). Effect of organic and biofertilizers on growth, oil yield and chemical composition of the essential oil of Ocimum basillicum L. plants. Alexandria Journal of Agricultural Research, 60(1), 1–16.

    Google Scholar 

  • El-Ziat, R. A., Swaefy, H. M., & Esmail, S. E. A. (2018). The response of red rubin basil plant to organic manure and humic acid versus chemical fertilizers. Middle East Journal of Agriculture Research, 7(3), 740–751.

    Google Scholar 

  • Estaji, A., Roosta, H. R., Rezaei, S. A., Hosseini, S. S., & Niknam, F. (2018). Morphological, physiological and phytochemical response of different Satureja hortensis L. accessions to salinity in a greenhouse experiment. Journal of Applied Research on Medicinal and Aromatic Plants, 10, 25–33.

    Article  Google Scholar 

  • Evelin, H., Giri, B., & Kapoor, R. (2012). Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza, 22, 203–217.

    Google Scholar 

  • Fallah, H. R., Mohammad, M., Aghhavani-Shajari, M., & Ranjbar, F. (2015). Determination of germination cardinal temperatures in two basil (Ocimum basilicum L.) cultivars using non-linear regression models. Journal of Applied Research on Medicinal and Aromatic Plants, (2), 140–145.

    Google Scholar 

  • FAO. (2013). Genebank standards for plant genetic resources for food and agriculture. FAO.

    Google Scholar 

  • Fatemi, R., & Aboutalebi, A. (2012). Evaluation the interaction of salinity and salicylic acid on sweet basil (Ocimum basilicum) properties. Annals of Biological Research, 3(11), 5106–5109.

    CAS  Google Scholar 

  • Fraj, H., Souguir, M., Werbrouck, S., Hannachi, C. (2016). Effect of salt stress (NaCl) on germination and plant parameters of three varieties of basil (Ocimum basilicum L.). In VII international scientific agriculture symposium, “Agrosym 2016”, 6-9 October 2016, Jahorina, Bosnia and Herzegovina. Proceedings 750–756.

    Google Scholar 

  • Gharib, F. A. E. (2006). Effect of salicylic acid on the growth, metabolic activities and oil content of basil and marjoram. International Journal of Agriculture and Biology, 4, 485–492.

    Google Scholar 

  • Golcz, A., Politycka, B., & Seidler-Łożykowska, K. (2006). The effect of nitrogen fertilization and stage of plant development on the mass and quality of sweet basil leaves (Ocimum basilicum L.). Herba Polonica Journal, 52(1/2), 22–29.

    CAS  Google Scholar 

  • Gora, J., & Lis, A. (2005). Najcenniejsze olejki eteryczne. UMK, Torun, 7–18.

    Google Scholar 

  • Grayer, R. J., Kite, G. C., Veitch, N. C., Eckert, M. R., Marin, P. D., Senanayake, P., & Paton, A. J. (2002). Leaf flavonoid glycosides as chemosystematic characters in Ocimum. Biochemical Systematics and Ecology, 30, 327–342. https://doi.org/10.1016/S0305-1978(01)00103-X

    Article  CAS  Google Scholar 

  • Gupta, S., Srivastava, A., Shasany, A. K., & Gupta, A. K. (2018). Genetics, cytogenetics, and genetic diversity in the genus Ocimum. In A. K. Shasany & C. Kole (Eds.), The Ocimum genome, compendium of plant genomes (pp. 73–87). Springer. https://doi.org/10.1007/978-3-319-97430-9_6

    Chapter  Google Scholar 

  • Hamasaki, R. T., Valenzuela, H. R., Tsuda, D. M., & Uchida, J. Y. (1994). Fresh basil production guidelines for Hawaii (Research extension series 154). CTAHR, University of Hawaii.

    Google Scholar 

  • Hasegawa, P. M., Bressan, R. A., Zhu, J. K., & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology, 51, 463–499.

    Article  CAS  Google Scholar 

  • Hendawy, S. F., & Khalid, K. A. (2005). Response of sage (Salvia officinalis L.) plants to zinc application under different salinity levels. Journal of Applied Sciences Research, 1, 147–155.

    Google Scholar 

  • Hessini, K., Ferchichi, S., Youssef, S. B., Werner, K. H., & Cruz, C. (2015). How does salinity duration affect growth and productivity of cultivated barley? Agronomy Journal, 107, 174–180.

    Article  Google Scholar 

  • Hussain, A. I., Anwar, F., Sherazi, S. T. H., & Przybylski, R. (2008). Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum L.) essential oils depends on seasonal variations. Food Chemistry, 108, 986–995.

    Article  CAS  Google Scholar 

  • IPGRI. (1993). Diversity for development. International Plant Genetic Resources Institute.

    Google Scholar 

  • Joshi, B. K., & Ghimire, K. H. (2017). Genebank operation manual. National Agricultural Genetic Resources Centre (NAGRC) National Genebank.

    Google Scholar 

  • Kahveci, H., Bilginer, N., Diraz-Yildirim, E., Kulak, M., Emre, E., Kocacinar, F., & Karaman, S. (2021). Priming with salicylic acid, β-carotene and tryptophan modulates growth, phenolics and essential oil components of Ocimum basilicum L. grown under salinity. Scientia Horticulturae, 281, 109964.

    Article  CAS  Google Scholar 

  • Kaya, A., & Inan, M. (2017). Effect of salicylic acid on some morphological, physiological and biochemical parameters of basil plant (Ocimum basilicum L.) which was subjected to salt (NaCl) stress. Harran Journal of Agricultural and Food Science, 21(3), 332–342.

    Google Scholar 

  • Khakdan, F., Nasiri, J., Ranjbar, M., & Alizadeh, H. (2017). Water deficit stress fluctuates expression profiles of 4Cl, C3H, COMT, CVOMT and EOMT genes involved in the biosynthetic pathway of volatile phenylpropanoids alongside accumulation of methylchavicol and methyleugenol in different Iranian cultivars of basil. Journal of Plant Physiology, 218, 74–83.

    Article  CAS  Google Scholar 

  • Khaliq, R., Tıta, O., & Ullah, Z. (2017). Possible assessment of salt tolerance in Ocimum basilicum by chlorophyll fluorescence. Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development, 17(3), 175–182.

    Google Scholar 

  • Khatri, L. M., Nasir, M. K. A., Saleem, R., & Noor, F. (1995). Evaluation of Pakistani sweet basil oil for commercial exploition. Pakistan Journal of Scientific and Industrial Research, 38, 281–282.

    CAS  Google Scholar 

  • Kopsell, D. A., Kopsell, D. E., & Curran-Celentano, J. (2005). Carotenoid and chlorophyll pigments in sweet basil grown in the field and greenhouse. HortScience, 40(5), 1230–1233.

    Article  CAS  Google Scholar 

  • Kordi, S., Saidi, M., & Ghanbari, F. (2013). Induction of drought tolerance in sweet basil (Ocimum basilicum L) by salicylic acid. International Journal of Agricultural and Food Research, 2(2), 18–26.

    Google Scholar 

  • Kumar, A., Sharma, S., & Mishra, S. (2010). Influence of arbuscular mycorrhizal (AM) fungi and salinity on seedling growth, solute accumulation and mycorrhizal dependency of Jatropha curcas L. Plant Growth Regulation, 29, 297–306.

    Article  CAS  Google Scholar 

  • Kurd, F., Fathi, M., & Shekarchizadeh, H. (2017). Basil seed mucilage as a new source for electrospinning: production and physicochemical characterization. International Journal of Biological Macromolecules, 95, 689–695.

    Google Scholar 

  • Labra, M., Miele, M., Ledda, B., Grassi, F., Mazzei, M., & Sala, F. (2004). Morphological characterization, essential oil composition and DNA genotyping of Ocimum basilicum L. cultivars. Plant Science, 167, 725–731.

    Article  CAS  Google Scholar 

  • Lal, R. (2013). Beyond intensification. Paper Presentation at the ASA, CSSA, & SSSA International Annual Meetings, Tampa, Florida, USA.

    Google Scholar 

  • Lange, D. L., & Cameron, A. C. (1997). Pre- and postharvest tem-perature conditioning of greenhouse-grown sweet basil. HortScience, 32, 114–116.

    Article  Google Scholar 

  • Larimi, S. B., Shakiba, M., Mohammadinasab, A. D., & Vahed, M. M. (2014). Changes in nitrogen and chlorophyll density and leaf area of sweet basil (Ocimum basilicum L.) affected by biofertilizer and nitrogen application. International Journal of Biosciences, 5, 256–265.

    Google Scholar 

  • Lehman, H., Clark, E. A., & Weise, S. F. (1993). Clarifying the definition of sustainable agriculture. Journal of Agricultural and Environmental Ethics, 6, 127–143.

    Article  Google Scholar 

  • Liang, X., Zhang, L., Natarajan, S. K., & Becker, D. F. (2013). Proline mechanisms of stress survival. Antioxidants & Redox Signaling, 19(9), 998–1011.

    Article  CAS  Google Scholar 

  • Linnaeus, C. (1753). Species Plantarum Exhibitentes Plantas Rite Cognitas ad Genera Relatas, cum Differentiis Specificis, Nominibus Trivialibus, Synonymis Selectis, et Locis Natalibus, Secundum Systema Sexuale Digestas, edn 1. Laurentius Salvius, Stockholm, Sweden. Facsimile published 1957–1959 as Ray Soc. Publ. 140 and 142. The Ray Society.

    Google Scholar 

  • Maboko, M. M., & Plooy, C. P. D. (2013). High-plant density planting of basil (Ocimum basilicum) during summer/fall growth season improves yield in a closed hydroponic system. Acta Agriculturae Scandinavica Section B Soil and Plant Science, 63(8), 748–752.

    CAS  Google Scholar 

  • Mandoulakani, B. A., Eyvazpour, E., & Ghadimzadeh, M. (2017). The effect of drought stress on the expression of key genes involved in the biosynthesis of phenylpropanoids and essential oil components in basil (Ocimum basilicum L.). Phytochemistry, 139, 1–7.

    Article  Google Scholar 

  • Mangmang, J. S., Deaker, R., & Gordon, R. (2016). Inoculation effect of Azospirillum brasilense on basil grown under aquaponics production system. Organic Agriculture, 6, 65–74.

    Google Scholar 

  • Medina, M., Jayachandran, K., Bhat, M. G., & Deoraj, A. (2016). Assessing plant growth, water quality and economic effects from application of a plant-based aquafeed in a recirculating aquaponic system. Aquaculture International, 24(1), 415–427.

    Article  Google Scholar 

  • Mijani, S., Eskandari, S., Zarghani, H., & Abadi, M. G. (2013). Seed germination and early growth responses of hyssop, sweet basil and oregano to temperature levels. Notulae Scientia Biologicae, 5(4), 462.

    Google Scholar 

  • Miyake, C. (2010). Alternative electron flows (water–water cycle and cyclic electron flow around PSI) in photosynthesis: molecular mechanisms and physiological functions. Plant & Cell Physiology, 51, 1951–1963.

    Article  CAS  Google Scholar 

  • Mueen, A. C., Naz, S. B., Sharif, A., Akram, M., & Saeed, M. A. (2015). Biological and pharmacological properties of the sweet basil (Ocimum basilicum). British Journal of Pharmaceutical Research, 7(5), 330–339.

    Article  Google Scholar 

  • Mukherjee, M., & Dutta, A. K. (2007). Basils-a review. Plant Archives, 7(2), 473–483.

    Google Scholar 

  • Munnu-Singh, R. S., & Singh, M. (2002). Response of Ocimum basilicum to organic and inorganic fertilizer in semi–arid tropical condition. Central Institute of Medicinal and Aromatic Plants, 24(4), 947–950.

    Google Scholar 

  • Muralidharan, A., & Dhananjayan, R. (2004). Cardiac stimulant activity of Ocimum basilicum Linn. Extracts Indian Journal of Pharmacology, 38(3), 163–166.

    Google Scholar 

  • Murbach Freire, C. M., Marques, M. O. M., & Costa, M. (2006). Effects of seasonal variation on the central nervous system activity of Ocimum gratissimum L. essential oil. Journal of Ethnopharmacology, 105, 161–166.

    Google Scholar 

  • Mustafa, A. M. A., Badr, A., El-Galaly, M. A., Mobarak, A. A., & Hassan, M. G. (2006). Genetic diversity among ocimum populations in egypt as reflected by morphological, seed proteins and isozyme polymorphism. International Journal of Botany, 2, 261–269.

    Google Scholar 

  • Nassar, M. A., El-Segai, M. U., & Mohamed, S. N. (2013). Botanical studies on Ocimum basilicum L. (Lamiaceae). Research Journal of Agriculture and Biological Sciences, 9(5), 150–163.

    Google Scholar 

  • Neffati, M., & Marzouk, B. (2009). Roots volatiles and fatty acids of coriander (Coriandrum sativum L.) grown in saline medium. Acta Physiologiae Plantarum, 31, 455–461.

    Article  CAS  Google Scholar 

  • Neffati, M., Sriti, J., Hamdaoui, G., Kchouk, M. E., & Marzouk, B. (2011). Salinity impact on fruit yield, essential oil composition and antioxidant activities of Coriandrum sativum fruit extracts. Food Chemistry, 124(1), 221–225.

    Google Scholar 

  • Noreen, S., Ashraf, M., Hussain, M., & Jamil, A. (2009). Exogenous application of salicylic acid enhances antioxidative capacity in salt stressed sunflower (Helianthus annuus L.) plants. Pakistan Journal of Botany, 41, 473–479.

    CAS  Google Scholar 

  • Nurzyńska-Wierdak, R. (2000). Results of field experiments of basil plants. Wiad Zielar, 11, 17–18.

    Google Scholar 

  • Nurzyñska-Wierdak, R. (2007a). Evaluation of morphological and developmental variability and essential oil composition of selected basil cultivars. Herba Polonica Journal, 53(3), 255–261.

    Google Scholar 

  • Nurzyñska-Wierdak, R. (2007b). Comparing the growth and flowering of selected basil (Ocimum basilicum L.) varieties. Acta Agrobotanica, 60(2), 127–131.

    Article  Google Scholar 

  • Nurzyñska-Wierdak, R. (2014). Morphological variability and essential oil composition of four Ocimum basilicum L. Cultivars Journal of Essential Oil Bearing Plants, 17(1), 112–119.

    Article  Google Scholar 

  • Nurzyńska-Wierdak, R., & Borowski, B. (2011). Dynamics of sweet basil (Ocimum basilicum L.) growth affected by cultivar and foliar feeding with nitrogen. Acta scientiarum Polonorum. Hortorum Cultus, 10(3), 307–317.

    Google Scholar 

  • Nurzyńska-Wierdak, R., Rożek, E., Dzida, K., & Borowski, B. (2012). Growth response to nitrogen and potassium fertilization of common basil (Ocimum basilicum L.) plants. Acta scientiarum Polonorum. Hortorum Cultus, 11(2), 275–288.

    Google Scholar 

  • Omidbaigi, R., Hassani, A., & Sefidkon, F. (2003). Essential oil content and composition of sweet basil (Ocimum basilicum) at different irrigation regimes. Journal of Essential Oil-Bearing Plants, 6(2), 104–108.

    Article  CAS  Google Scholar 

  • Padalia, R. C., Verma, R. S., Upadhyay, R. K., Chauhan, A., & Singh, V. R. (2017). Productivity and essential oil quality assessment of promising accessions of Ocimum basilicum L. from North India. Industrial Crops and Products, 97, 79–86.

    Article  CAS  Google Scholar 

  • Partridge, G. J., & Jenkins, G. (2002). The effect of salinity on growth and survival of juvenile black bream (Acanthopagrus butcheri). Aquaculture, 210(1–4), 219–230.

    Google Scholar 

  • Paton, A., Harley, M. R., & Harley, M. M. (1999). Ocimum: an overview of classification and relationships. In R. Hiltunen & Y. Holm (Eds.), Basil: the genus Ocimum (pp. 1–38). Harwood.

    Google Scholar 

  • Pripdeevech, P., Chumpolsri, W., Panawan, S., & Mahatheeranont, S. (2010). The chemical composition and antioxidant activities of basil from Thailand using retention indices and comprehensive two-dimensional gas chromatography. Journal of the Serbian Chemical Society, 75(11), 1503–1513.

    Article  CAS  Google Scholar 

  • Rakocy, J. E., Shultz, R. C., Bailey, D. S., & Thoman, E. S. (2004). Aquaponic production of tilapia and basil: comparing a batch and staggered cropping system. Acta Horticulturae, 648, 63–69.

    Article  Google Scholar 

  • Rakocy, J. E., Losordo, T. M., & Masser, M. P. (2006). Recirculating aquaculture tank production systems: integrating fish and plant culture, southern region. Aquaculture Center Publications, 454, 1–16.

    Google Scholar 

  • Randhawa, G., Gill, B., & Raychaudhuri, S. (1992). Optimising agronomic requirements of anise (Pimpinella anisum L.) in the Punjab. Recent advances in medicinal. Aromatic and Spice Crops, 2, 413–416.

    Google Scholar 

  • Rao, E. V. S. P., Puttana, K., Ganesha, R. S., & Ramesh, S. (2007). Nitrogen and potassium nutrition of French basil (Ocimum basilicum Linn.). Journal of Spices and Aromatic Crops, 16(2), 99–105.

    Google Scholar 

  • Raseetha Vani, S., Cheng, S. F., & Chuah, C. H. (2009). Comparative study of volatile compounds from genus Ocimum. American Journal of Applied Sciences, 6(3), 523–528.

    Article  Google Scholar 

  • Refaat, A. M., & Saleh, M. M. (1998). The combined effect of irrigation intervals and nutrition on sweet basil plants. Horticultural Abstracts, 68(6), 515–526.

    Google Scholar 

  • Ribeiro, P., & Simon, J. E. (2007). Breeding sweet basil for chilling tolerance. In J. Janick & A. Whipkey (Eds.), Issues in new crops and new uses (pp. 302–305). ASHS Press.

    Google Scholar 

  • Sadeghi, S., Rahnavard, A., & Ashrafi, Z. Y. (2009). The effect of plant density and sowing date on yield of Basil (Ocimum basilicum L.) in Iran. Journal of Agricultural Technology, 5(2), 413–422.

    Google Scholar 

  • Safaam, M., El-Ghait, E. M. A., El Shayeb, N. S. A., Ghatas, Y. A., & Shahin, A. A. (2015). Effect of some fertilizers on improving growth and oil productivity of basil (Ocimum basilicum L.) CV. Genovese plant. Egyptian Journal of Applied Science, 30(6), 384–399.

    Google Scholar 

  • Saha, S., Monroe, A., & Day, M. R. (2016). Growth, yield, plant quality and nutrition of basil (Ocimum basilicum L.) under soilless agricultural systems. Annals of Agricultural Science, 61, 181–186.

    Article  Google Scholar 

  • Sajjadi, S. E. (2006). Analysis of the essential oils of two cultivated basil (Ocimum basilicum L.) from Iran. DARU, 14(3), 128–130.

    CAS  Google Scholar 

  • Salles Trevisian, M. T., Vasconeselos Silva, M. G., Pfundstein, B., Spiegelhalder, B., & Owen, R. W. (2006). Characterization of the volatile pattern and antioxidant capacity of essential oils from different species of the genus Ocimum. Journal of Agricultural and Food Chemistry, 54, 4378–4382.

    Article  Google Scholar 

  • Santos, J. F., Filho, M. A. C., Cruz, J. L., Soares, T. M., & Cruz, A. M. L. (2019). Growth, water consumption and basil production in the hydroponic system under salinity. Revista Ceres Viçosa, 66(1), 045–053.

    Article  Google Scholar 

  • Seawright, D. E., Stickney, R. R., & Walker, R. B. (1998). Nutrient dynamics in integrated aquaculture-hydroponics systems. Aquaculture, 160(3), 215–237.

    Article  CAS  Google Scholar 

  • Senji, B. M., & Mandoulakani, B. A. (2018). The impact of cold stress on genes expression pattern of mono- and sesquiterpene biosynthesis and their contents in Ocimum basilicum L. Phytochemistry, 156, 250–256.

    Article  Google Scholar 

  • Sharafzadeh, S., & Alizadeh, O. (2011). Nutrient supply and fertilization of basil. Advances in Environmental Biology, 5(5), 956–960.

    Google Scholar 

  • Sharafzadeh, S., Esmaeili, M., & Mohammadi, A. H. (2011). Interaction effects of nitrogen, phosphorus and potassium on growth, essentials oil and total phenolic content of sweet basil. Advances in Environmental Biology, 5(6), 1285–1289.

    Google Scholar 

  • Sifola, M. I., & Barbieri, G. (2006). Growth, yield and essential oil content of three cultivars of basil grown under different levels of nitrogen in the field. Scientia Horticulturae, 108, 408–413.

    Article  CAS  Google Scholar 

  • Simon, J. E., Quin, J., & Murray, R. G. (1990). Basil: a source of essential oils. In J. Janik & J. E. Simon (Eds.), Advances in new crops (pp. 484–489). Timber Press.

    Google Scholar 

  • Singletary, K. W. (2018). Basil: a brief summary of potential health benefits. Nutrition Today, 53(2), 92–97.

    Article  Google Scholar 

  • Sirousmehr, A., Arbabi, J., & Asgharipour, M. R. (2014a). Effect of drought stress levels and organic manures on yield, essential oil content and some morphological characteristics of sweet basil (Ocimum basilicum). Advances in Environmental Biology, 8(5), 1322–1327.

    Google Scholar 

  • Sirousmehr, A., Arbabi, J., & Asgharipour, M. R. (2014b). Effect of drought stress levels and organic manures on yield, essential oil content and some morphological characteristics of sweet basil (Ocimum basilicum). Advances in Environmental Biology, 8(4), 880–885.

    CAS  Google Scholar 

  • Srivastava, A., Gupta, A. K., Sarkar, S., Lal, R. K., Yadav, A., Gupta, P., & Chanotiya, C. S. (2018). Genetic and chemotypic variability in basil (Ocimum basilicum L.) germplasm towards future exploitation. Industrial Crops and Products, 112, 815–820.

    Article  CAS  Google Scholar 

  • Sumner, M. E. (2000). Beneficial use of effluents, waste, and biosolids. Communicationin Soil and Plant Analyses, 31, 1701–1715.

    Article  CAS  Google Scholar 

  • Svecova, E., & Neugebauerov, J. (2010). A study of 34 cultivars of basil (Ocimum L) and their morphological, economic and biochemical characteristics, using standardized descriptors. Acta Universitatis Sapientiae, Alimentaria, 3, 118–135.

    Google Scholar 

  • Talaat, I. M., & Youssef, A. A. (2002). The role of the amino acids lysine and ornithine in growth and chemical constituents of basil plants. Egyptian Journal of Applied Science, 17(5), 83–95.

    Google Scholar 

  • Telci, I., Bayram, E., Yılmaz, G., & Avcı, B. (2006). Variability in essential oil composition of Turkish basils (Ocimum basilicum L.). Biochemical Systematics and Ecology, 34, 489–497.

    Article  CAS  Google Scholar 

  • Tesi, R., Ghiselli, L., & Tallarico, R. (1995). Nitrate accumulation in basil (Ocimum basilicum) in relation to different cultural factors. Italus Hortus, 2, 43–48.

    Google Scholar 

  • Tesi, R., Frabotta, A., Nencini, A., & Tallarico, R. (1997). Foilar ferilizer application and nitrate accumulation in basil (Ocimum basilicum). Colturre-Protette, 26, 95–100.

    Google Scholar 

  • Treadwell, D. D., Hochmuth, G. J., Hochmuth, R. C., Simonne, E. H., Sargent, S. A., Davis, L. L., Laughlin, W. L., & Berry, A. (2011). Organic fertilization programs for greenhouse fresh-cut basil and spearmint in a soilless media trough system. HortTechnology, 21(2), 162–169.

    Article  CAS  Google Scholar 

  • Upadhyaya, H. D., Gowda, C. L. L., & Sastry, D. V. S. S. R. (2008). Plant genetic resources management: collection, characterization, conservation and utilization. ICRISAT, 6, 1–16.

    Google Scholar 

  • UPOV. (2003). Basil (Ocimum basilicum L.): Guidelines for the conduct of tests for distinctness, uniformity and stability. UPOV.

    Google Scholar 

  • Vieira, R. F., Goldsbrough, P., & Simon, J. E. (2003). Genetic diversity of basil (Ocimum spp.) based on RAPD markers. Journal of the American Society for Horticultural Science, 128(1), 94–99.

    Article  CAS  Google Scholar 

  • Wahab, A., & Hornok, L. (1982). Effect of NPK fertilization on Ocimum basilicum yield and essential oil content. Kerteszeti Egytem Kozlemenyei, 45, 65–73.

    Google Scholar 

  • Wilkie, M. P. (1997). Mechanisms of ammonia excretion across fish gills. Comparative Biochemistry and Physiology, 1, 39–50.

    Article  Google Scholar 

  • Yaldiz, G., & Camlica, M. (2021). Agro-morphological and phenotypic variability of sweet basil genotypes for breeding purposes. Crop Science, 61(1), 621–642.

    Article  CAS  Google Scholar 

  • Yaldiz, G., Gul, F., & Kulak, M. (2015). Herb yield and chemical composition of basil (Ocimum basilicum L) essential oil in relation to the different harvest period and cultivation conditions. African Journal of Traditional, Complementary, and Alternative Medicines, 12(6), 71–76.

    Article  CAS  Google Scholar 

  • Yaldiz, G., Camlica, M., Eratalar, S. A., & Kulak, M. (2017). The effects of different kıbele fertilizer applications on yield of sweet basil (Ocimum basilicum L.). Journal of the Institute of Science and Technology, 7(1), 363–370.

    Article  Google Scholar 

  • Yaldiz, G., Camlica, M., & Ozen, F. (2018a). The effects of different doses of organic chicken fertilizer on the element analysis of sweet basil (Ocimum basilicum L.). ANADOLU, Journal of AARI, 28(1), 83–88.

    Google Scholar 

  • Yaldiz, G., Özen, F., Çamlıca, M., & Sönmez, F. (2018b). Alleviation of salt stress by increasing potassium sulphate doses in four medicinal and aromatic plants. Acta Agriculturae Scandinavica Section B Soil and Plant Science, 68(5), 437–447.

    CAS  Google Scholar 

  • Yaldiz, G., Camlica, M., & Ozen, F. (2019a). Biological value and chemical components of essential oils of sweet basil (Ocimum basilicum L.) grown with organic fertilization sources. Journal of the Science of Food and Agriculture, 99(4), 2005–2013.

    CAS  Google Scholar 

  • Yaldiz, G., Camlica, M., Ozen, F., & Eratalar, S. A. (2019b). Effect of poultry manure on yield and nutrient composition of sweet basil (Ocimum basilicum L.). Communications in Soil Science and Plant Analysis, 50(7), 838–852.

    Article  CAS  Google Scholar 

  • Yang, T., & Kim, H. (2020). Characterizing nutrient composition and concentration in tomato, basil, and lettuce-based aquaponic and hydroponic systems. Water, 12, 1259. https://doi.org/10.3390/w12051259

    Article  Google Scholar 

  • Youssef, A. A., Talaat, I. M., & Omer, E. A. (1998). Physiological response of basil green ruffles (Ocimum basilicum L.) to nitrogen fertilization in different soil types. Egyptian Journal of Horticulture, 25, 253–269.

    CAS  Google Scholar 

  • Yu, X., Liang, C., Chen, J., Qi, X., Liu, Y., & Li, W. (2015). The effects of salinity stress on morphological characteristics, mineral nutrient accumulation and essential oil yield and c composition in Mentha canadensis L. Scientia Horticulturae, 197, 579–583.

    Article  CAS  Google Scholar 

  • Zheljazkov, V. D., Callahan, A., & Cantrell, C. L. (2008). Yield and oil composition of 38 basil (Ocimum basilicum L.) accessions grown in Mississippi. Journal of Agricultural and Food Chemistry, 56, 241–245.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Camlica, M., Yaldiz, G. (2023). Basil (Ocimum basilicum L.): Botany, Genetic Resource, Cultivation, Conservation, and Stress Factors. In: Prakash, C.S., Fiaz, S., Nadeem, M.A., Baloch, F.S., Qayyum, A. (eds) Sustainable Agriculture in the Era of the OMICs Revolution. Springer, Cham. https://doi.org/10.1007/978-3-031-15568-0_7

Download citation

Publish with us

Policies and ethics