Skip to main content
Log in

Assessment of agronomic, chemical and genetic variability in common basil (Ocimum basilicum L.)

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

In the present work, agro-morphological characteristics, essential oil composition and randomly amplified polymorphic DNA (RAPD) markers were studied to estimate the relationships among 12 basil (Ocimum basilicum L.) genotypes, belonging to nine known cultivars grown in Italy. The basil cultivars were distinguished on the basis of agro-morphological determinations and constituents of essential oil. Chemical compounds of essential oils were found variable in the various basil cultivars. As a consequence, the plants were classified into main phenotypes and chemotypes. RAPD markers were used in order to assess the genetic relatedness among the basil cultivars. On the basis of their genetic similarities, RAPD analysis allowed to group the samples into two main clusters. One of these included cultivars suitable for food industry, which were also correlated via agro-morphological features. However, the same cultivars produced distinct essential oil profiles, which did not match with results obtained by agronomic and genetic analysis. This fact, maybe, is due to a different genic expression of the key enzymes involved in biosynthetic pathways that produce chemical compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Deshpande RS, Tipnis HP (1977) Pesticides 11:11–12

    CAS  Google Scholar 

  2. Chavan SR, Nikam ST (1982) Indian J Med Res 75:220–222

    CAS  PubMed  Google Scholar 

  3. Reuveni R, Fleisher A, Putievsky E (1984) Phytopath Z 110:20–22

    CAS  Google Scholar 

  4. Wan J, Wilcock A, Coventry MJ (1998) J Appl Microbiol 84(2):152–158

    CAS  PubMed  Google Scholar 

  5. Suppakul P, Miltz J, Sonneveld K, Bigger SW (2003) J Agric Food Chem 51:3197–3207

    CAS  PubMed  Google Scholar 

  6. Gang DR, Wang J, Dudareva N, Nam KH, Simon JE, Lewinsohn E, Pichersky E (2001) Plant Physiol 125:539–555

    CAS  PubMed  Google Scholar 

  7. Iijima Y, Gang DR, Fridman E, Lewinsohn E, Pichersky E (2004) Plant Physiol 134(1):370–379

    CAS  PubMed  Google Scholar 

  8. Siviero P (2003) Essenze Derivati Agrumari 73(1):23–27

    Google Scholar 

  9. Fleisher A(1981) J Sci Food Agric 32:1119–1122

    CAS  Google Scholar 

  10. Tateo F (1989) J Essent Oil Res 1:137–138

    CAS  Google Scholar 

  11. Grayer RJ, Kite GC, Goldstone FJ, Bryan SE, Paton A, Putievsky E (1996) Phytochemistry 43(5):1033–1039

    CAS  PubMed  Google Scholar 

  12. Marotti M, Piccaglia R, Giovanelli E (1996) J Agric Food Chem 44(12):3926–3929

    CAS  Google Scholar 

  13. Miele M, Dondero R, Ciarallo G, Mazzei M (2001) J Agric Food Chem 49:517–521

    CAS  PubMed  Google Scholar 

  14. Vieira RF, Goldsbrough P, Simon JE (2003) J Am Soc Hortic Sci 128(1):94–99

    CAS  Google Scholar 

  15. Labra M, Miele M, Ledda B, Grassi F, Mazzei M, Sala F (2004) Plant Sci 167(4):725–731

    CAS  Google Scholar 

  16. Welsh J, McClelland M (1990) Nucleic Acids Res 18(24):7213–7218

    CAS  PubMed  Google Scholar 

  17. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) Nucleic Acids Res 18(22):6531–6535

    CAS  PubMed  Google Scholar 

  18. Karp A, Seberg O, Buiatti M (1996) Ann Bot (Lond) 78(2):143–149

    CAS  Google Scholar 

  19. Micheli MR, Bova R (1997) Fingerprinting methods based on arbitrarily primed PCR. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  20. Mullis KB, Faloona FA (1987) Methods Enzymol 155:335–350

    Article  CAS  PubMed  Google Scholar 

  21. Vos P, Hogers R, Bleeker M, Reijans M, Van De Lee T, Horenes M, Fiujters A, Pot J, Pelerman J, Kuiper M, Zabeau M (1995) Nucleic Acids Res 23:4407–4414

    CAS  PubMed  Google Scholar 

  22. Galderisi U, Cipollaro M, Di Bernardo G, De Masi L, Galano G, Cascino A (1998) J Hortic Sci Biotechnol 73(2):259–263

    CAS  Google Scholar 

  23. Galderisi U, Cipollaro M, Di Bernardo G, De Masi L, Galano G, Cascino A (1999) Hortscience 34(7):1263–1265

    CAS  Google Scholar 

  24. Galderisi U, Cipollaro M, Di Bernardo G, De Masi L, Galano G, Cascino A (1999) Plant Cell Rep 18(7/8):652–655

    CAS  Google Scholar 

  25. De Masi L, Galtieri V, Minasi P, Laratta B (2004) L’informatore Agrario 46:57–58

    Google Scholar 

  26. De Masi L, Castaldo D, Galano G, Minasi P, Laratta B (2005) J Sci Food Agric 85:2235–2242

    CAS  Google Scholar 

  27. De Masi L, Siviero P, Minasi P, Laratta B (2003) Essenze Derivati Agrumari 73(2):65–70

    CAS  Google Scholar 

  28. Kovach WL (1999) MVSP – A MultiVariate Statistical Package for Windows, ver 3.1. Kovach Computing Services, Pentraeth, Wales, UK

  29. Lawrence BM (1992) In: Harley RM, Reynolds T (eds) Advances in labiate science. Royal Botanic Garden, Kew, UK, pp 399–436

  30. Darrah HH (1980) The cultivated basils. Buckeye Printing Company, Independence, MO

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruna Laratta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Masi, L., Siviero, P., Esposito, C. et al. Assessment of agronomic, chemical and genetic variability in common basil (Ocimum basilicum L.). Eur Food Res Technol 223, 273–281 (2006). https://doi.org/10.1007/s00217-005-0201-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-005-0201-0

Keywords

Navigation