Skip to main content

Abstract

Male infertility research and clinical advances had vast progress in the last few decades. Strong research evidence underpinned the concepts of oxidative stress (OS)-mediated male reproductive disruptions, which bear answers to several cases of idiopathic male infertility. Antioxidant treatment held the prime solution for OS-mediated male infertility. But excess use of antioxidants is challenged by the research breakthrough that reductive stress also predisposes to male infertility, resolutely instituting that any biological extremes of the redox spectrum are deleterious to male fertility. Superfluity of reducing agents may hinder essential oxidation mechanisms, affecting physiological homeostasis. These mechanisms need to be explicated and updated time and again to identify the fine thread between OS-mediated male infertility treatment and induction of reductive stress. This chapter thus presents the evidence-based concepts pertaining to the antioxidants actions to combat OS-induced male infertility, the mechanism of induction of reductive stress and its impact on male reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abad C, Amengual M, Gosálvez J, Coward K, Hannaoui N, Benet J, et al. Effects of oral antioxidant treatment upon the dynamics of human sperm DNA fragmentation and subpopulations of sperm with highly degraded DNA. Andrologia. 2013;45(3):211–6.

    Article  CAS  Google Scholar 

  • Agarwal A, Sengupta P. Oxidative stress and its association with male infertility. In: Parekattil S, Esteves S, Agarwal A, editors. Male infertility. Springer; 2020. p. 57–68.

    Chapter  Google Scholar 

  • Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril. 2003;79(4):829–43.

    Article  Google Scholar 

  • Agarwal A, Makker K, Sharma R. Clinical relevance of oxidative stress in male factor infertility: an update. Am J Reprod Immunol. 2008;59(1):2–11.

    Article  CAS  Google Scholar 

  • Agarwal A, Mulgund A, Hamada A, Chyatte MR. A unique view on male infertility around the globe. Reprod Biol Endocrinol. 2015;13(1):1–9.

    Article  Google Scholar 

  • Ahmadi S, Bashiri R, Ghadiri-Anari A, Nadjarzadeh A. Antioxidant supplements and semen parameters: an evidence based review. Int J Reprod Biomed. 2016;14(12):729.

    Article  CAS  Google Scholar 

  • Aktan G, Doğru-Abbasoğlu S, Küçükgergin C, Kadıoğlu A, Özdemirler-Erata G, Koçak-Toker N. Mystery of idiopathic male infertility: is oxidative stress an actual risk? Fertil Steril. 2013;99(5):1211–5.

    Article  CAS  Google Scholar 

  • Alahmar AT. The effects of oral antioxidants on the semen of men with idiopathic oligoasthenoteratozoospermia. Clin Exp Reprod Med. 2018;45(2):57.

    Article  Google Scholar 

  • Alahmar AT, Sengupta P. Impact of coenzyme Q10 and selenium on seminal fluid parameters and antioxidant status in men with idiopathic infertility. Biol Trace Elem Res. 2021;199(4):1246–52.

    Article  CAS  Google Scholar 

  • Alahmar AT, Calogero AE, Sengupta P, Dutta S. Coenzyme Q10 improves sperm parameters, oxidative stress markers and sperm DNA fragmentation in infertile patients with idiopathic oligoasthenozoospermia. World J Mens Health. 2021a;39(2):346.

    Article  Google Scholar 

  • Alahmar AT, Sengupta P, Dutta S, Calogero AE. Coenzyme Q10, oxidative stress markers, and sperm DNA damage in men with idiopathic oligoasthenoteratospermia. Clin Exp Reprod Med. 2021b;48(2):150–5.

    Article  Google Scholar 

  • Alahmar AT, Calogero AE, Singh R, Cannarella R, Sengupta P, Dutta S. Coenzyme Q10, oxidative stress, and male infertility: a review. Clin Exp Reprod Med. 2021c;48(2):97–104.

    Article  Google Scholar 

  • Alpha-Tocopherol Beta Carotene Cancer Prevention Study Group. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. New Eng J Med. 1994;330(15):1029–35.

    Article  Google Scholar 

  • Aruoma OI, Halliwell B, Gajewski E, Dizdaroglu M. Copper-ion-dependent damage to the bases in DNA in the presence of hydrogen peroxide. Biochem J. 1991;273(3):601–4.

    Article  CAS  Google Scholar 

  • Atta EM, Mohamed NH, Abdelgawad AA. Antioxidants: an overview on the natural and synthetic types. Eur Chem Bull. 2017;6(8):365–75.

    Article  CAS  Google Scholar 

  • Barratt CL, Björndahl L, De Jonge CJ, Lamb DJ, Osorio Martini F, McLachlan R, et al. The diagnosis of male infertility: an analysis of the evidence to support the development of global WHO guidance—challenges and future research opportunities. Hum Reprod Update. 2017;23(6):660–80.

    Article  Google Scholar 

  • Bhattacharya K, Sengupta P, Dutta S, Karkada IR. Obesity, systemic inflammation and male infertility. Chem Biol Lett. 2020;7(2):92–8.

    CAS  Google Scholar 

  • Bioveris A, Chance B. The mitochondrial generation of hydrogen peroxide. Biochem J. 1973;134:707.

    Article  Google Scholar 

  • Bjelakovic G, Nikolova D, Simonetti RG, Gluud C. Antioxidant supplements for prevention of gastrointestinal cancers: a systematic review and meta-analysis. Lancet. 2004;364(9441):1219–28.

    Article  CAS  Google Scholar 

  • Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. J Am Med Assoc. 2007;297(8):842–57.

    Article  CAS  Google Scholar 

  • Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst Rev. 2012;2012(3):CD007176.

    Google Scholar 

  • Bjørklund G, Chirumbolo S. Role of oxidative stress and antioxidants in daily nutrition and human health. Nutrition. 2017;33:311–21.

    Article  Google Scholar 

  • Bleau G, Lemarbre J, Faucher G, Roberts KD, Chapdelaine A. Semen selenium and human fertility. Fertil Steril. 1984;42(6):890–4.

    Article  CAS  Google Scholar 

  • Bouayed J, Bohn T. Exogenous antioxidants—double-edged swords in cellular redox state: health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid Med Cell Longev. 2010;3(4):228–37.

    Article  Google Scholar 

  • Brewer AC, Mustafi SB, Murray TV, Rajasekaran NS, Benjamin IJ. Reductive stress linked to small HSPs, G6PD, and Nrf2 pathways in heart disease. Antioxid Redox Signal. 2013;18(9):1114–27.

    Article  CAS  Google Scholar 

  • Busetto G, Agarwal A, Virmani A, Antonini G, Ragonesi G, Del Giudice F, et al. Effect of metabolic and antioxidant supplementation on sperm parameters in oligo-astheno-teratozoospermia, with and without varicocele: a double-blind placebo-controlled study. Andrologia. 2018;50(3):e12927.

    Article  Google Scholar 

  • Castagne V, Lefevre K, Natero R, Becker D, Clarke P. An optimal redox status for the survival of axotomized ganglion cells in the developing retina. Neuroscience. 1999;93(1):313–20.

    Article  CAS  Google Scholar 

  • Datta J, Palmer M, Tanton C, Gibson L, Jones K, Macdowall W, et al. Prevalence of infertility and help seeking among 15 000 women and men. Hum Reprod. 2016;31(9):2108–18.

    Article  CAS  Google Scholar 

  • De Lamirande E, Gagnon C. Impact of reactive oxygen species on spermatozoa: a balancing act between beneficial and detrimental effects. Hum Reprod. 1995;10(suppl_1):15–21.

    Article  CAS  Google Scholar 

  • Donnelly ET, McClure N, Lewis SE. The effect of ascorbate and α-tocopherol supplementation in vitro on DNA integrity and hydrogen peroxide-induced DNA damage in human spermatozoa. Mutagenesis. 1999;14(5):505–12.

    Article  CAS  Google Scholar 

  • Dröge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95.

    Article  Google Scholar 

  • Dutta S, Sengupta P. Role of nitric oxide in male and female reproduction. Malays J Med Sci. 2021;29(2):18–30.

    Google Scholar 

  • Dutta S, Biswas A, Sengupta P. Obesity, endocrine disruption and male infertility. Asian Pac J Reprod. 2019;8(5):195.

    Article  CAS  Google Scholar 

  • Dutta S, Henkel R, Sengupta P, Agarwal A. Physiological role of ROS in sperm function. In: Parekattil S, Esteves S, Agarwal A, editors. Male infertility. Springer; 2020. p. 337–45.

    Chapter  Google Scholar 

  • Fraga CG, Motchnik PA, Shigenaga MK, Helbock HJ, Jacob RA, Ames BN. Ascorbic acid protects against endogenous oxidative DNA damage in human sperm. Proc Natl Acad Sci U S A. 1991;88(24):11003–6.

    Article  CAS  Google Scholar 

  • Garg H, Kumar R. An update on the role of medical treatment including antioxidant therapy in varicocele. Asian J Androl. 2016;18(2):222.

    Article  CAS  Google Scholar 

  • Giustarini D, Dalle-Donne I, Colombo R, Milzani A, Rossi R. Is ascorbate able to reduce disulfide bridges? A cautionary note. Nitric Oxide. 2008;19(3):252–8.

    Article  CAS  Google Scholar 

  • Greabu M, Battino M, Mohora M, Olinescu R, Totan A, Didilescu A. Oxygen, a paradoxical element. Rom J Intern Med. 2008;46(2):125–35.

    CAS  Google Scholar 

  • Greco E, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, Tesarik J. Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. J Androl. 2005;26(3):349–53.

    Article  CAS  Google Scholar 

  • Gual-Frau J, Abad C, Amengual MJ, Hannaoui N, Checa MA, Ribas-Maynou J, et al. Oral antioxidant treatment partly improves integrity of human sperm DNA in infertile grade I varicocele patients. Hum Fertil. 2015;18(3):225–9.

    Article  CAS  Google Scholar 

  • Halliwell B. Antioxidant defence mechanisms: from the beginning to the end (of the beginning). Free Rad Res. 1999;31(4):261–72.

    Article  CAS  Google Scholar 

  • Halliwell B. The antioxidant paradox. Lancet. 2000;355(9210):1179–80.

    Article  CAS  Google Scholar 

  • Halliwell B. Free radicals and antioxidants–quo vadis? Trends Pharmacol Sci. 2011;32(3):125–30.

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JM. Free radicals in biology and medicine. USA: Oxford University Press; 2015.

    Book  Google Scholar 

  • Hampton MB, Kettle AJ, Winterbourn CC. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood. 1998;92(9):3007–17.

    Article  CAS  Google Scholar 

  • Harvey AJ, Kind KL, Thompson JG. REDOX regulation of early embryo development. Reproduction. 2002;123(4):479–86.

    Article  CAS  Google Scholar 

  • Hawkes WC, Alkan Z, Wong K. Selenium supplementation does not affect testicular selenium status or semen quality in North American men. Journal of Andrology. 2009;30(5):525-33.

    Google Scholar 

  • Hayyan M, Hashim MA, AlNashef IM. Superoxide ion: generation and chemical implications. Chem Rev. 2016;116(5):3029–85.

    Article  CAS  Google Scholar 

  • Izuka E, Menuba I, Sengupta P, Dutta S, Nwagha U. Antioxidants, anti-inflammatory drugs and antibiotics in the treatment of reproductive tract infections and their association with male infertility. Chem Biol Lett. 2020;7(2):156–65.

    CAS  Google Scholar 

  • John Aitken R, Clarkson JS, Fishel S. Generation of reactive oxygen species, lipid peroxidation, and human sperm function. Biol Reprod. 1989;41(1):183–97.

    Article  Google Scholar 

  • Kahn BE, Brannigan RE. Obesity and male infertility. Curr Opin Urol. 2017;27(5):441–5.

    Article  Google Scholar 

  • Kessopoulou E, Powers HJ, Sharma KK, Pearson MJ, Russell JM, Cooke ID, et al. A double-blind randomized placebo cross-over controlled trial using the antioxidant vitamin E to treat reactive oxygen species associated male infertility. Fertil Steril. 1995;64(4):825–31.

    Article  CAS  Google Scholar 

  • Klein EA, Thompson IM, Tangen CM, Crowley JJ, Lucia MS, Goodman PJ, et al. Vitamin E and the risk of prostate cancer: the selenium and vitamin E cancer prevention trial (SELECT). J Am Med Assoc. 2011;306(14):1549–56.

    Article  CAS  Google Scholar 

  • Korge P, Calmettes G, Weiss JN. Increased reactive oxygen species production during reductive stress: the roles of mitochondrial glutathione and thioredoxin reductases. Biochim Biophys Acta. 2015;1847(6–7):514–25.

    Article  CAS  Google Scholar 

  • Kothari S, Thompson A, Agarwal A, du Plessis SS. Free radicals: their beneficial and detrimental effects on sperm function. Indian J Exp Biol. 2010;48(5):425–35.

    CAS  Google Scholar 

  • Leese HJ. Metabolic control during preimplantation mammalian development. Hum Reprod Update. 1995;1(1):63–72.

    Article  CAS  Google Scholar 

  • Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol. 2013;6(1):1–19.

    Article  CAS  Google Scholar 

  • Louis JF, Thoma ME, Sørensen DN, McLain AC, King RB, Sundaram R, et al. The prevalence of couple infertility in the United States from a male perspective: evidence from a nationally representative sample. Andrology. 2013;1(5):741–8.

    Article  CAS  Google Scholar 

  • Mathur PP, Huang L, Kashou A, Vaithinathan S, Agarwal A. Environmental toxicants and testicular apoptosis. Open Reprod Sci J. 2011;3(1):114–24.

    Article  CAS  Google Scholar 

  • Ménézo YJ, Hazout A, Panteix G, Robert F, Rollet J, Cohen-Bacrie P, et al. Antioxidants to reduce sperm DNA fragmentation: an unexpected adverse effect. Reprod Biomed Online. 2007;14(4):418–21.

    Article  Google Scholar 

  • Ménézo Y, Entezami F, Lichtblau I, Belloc S, Cohen M, Dale B. Oxidative stress and fertility: incorrect assumptions and ineffective solutions? Zygote. 2014;22(1):80.

    Article  Google Scholar 

  • Mentor S, Fisher D. Aggressive antioxidant reductive stress impairs brain endothelial cell angiogenesis and blood brain barrier function. Curr Neurovas Res. 2017;14(1):71–81.

    Article  CAS  Google Scholar 

  • Miller ER III, Pastor-Barriuso R, Dalal D, Riemersma RA, Appel LJ, Guallar E. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med. 2005;142(1):37–46.

    Article  CAS  Google Scholar 

  • Moilanen J, Hovatta O, Lindroth L. Vitamin E levels in seminal plasma can be elevated by oral administration of vitamin E in infertile men. Int J Androl. 1993;16(2):165–6.

    Article  CAS  Google Scholar 

  • Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417(1):1–13.

    Article  CAS  Google Scholar 

  • O’Flaherty C. Redox regulation of mammalian sperm capacitation. Asian J Androl. 2015;17(4):583.

    Article  Google Scholar 

  • O’Flaherty C, de Lamirande E, Gagnon C. Reactive oxygen species and protein kinases modulate the level of phospho-MEK-like proteins during human sperm capacitation. Biol Reprod. 2005;73(1):94–105.

    Article  Google Scholar 

  • Omenn GS, Goodman GE, Thornquist MD, Balmes J, Cullen MR, Glass A, et al. Risk factors for lung cancer and for intervention effects in CARET, the Beta-Carotene and Retinol Efficacy Trial. J Natl Cancer Inst. 1996;88(21):1550–9.

    Article  CAS  Google Scholar 

  • Pérez-Torres I, Guarner-Lans V, Rubio-Ruiz ME. Reductive stress in inflammation-associated diseases and the pro-oxidant effect of antioxidant agents. Int J Mol Sci. 2017;18(10):2098.

    Article  Google Scholar 

  • Poljsak B, Šuput D. ROS and antioxidants: achieving the balance between when to use the synthetic antioxidants. Oxid Med Cell Longev. 2013;2013:956792.

    Article  Google Scholar 

  • Raha S, Robinson BH. Mitochondria, oxygen free radicals, disease and ageing Trends. Biochem Sci. 2000;25:502–8.

    Article  CAS  Google Scholar 

  • Rolf C, Cooper T, Yeung C, Nieschlag E. Antioxidant treatment of patients with asthenozoospermia or moderate oligoasthenozoospermia with high-dose vitamin C and vitamin E: a randomized, placebo-controlled, double-blind study. Hum Reprod. 1999;14(4):1028–33.

    Article  CAS  Google Scholar 

  • Schisterman EF, Sjaarda LA, Clemons T, Carrell DT, Perkins NJ, Johnstone E, et al. Effect of folic acid and zinc supplementation in men on semen quality and live birth among couples undergoing infertility treatment: a randomized clinical trial. J Am Med Assoc. 2020;323(1):35–48.

    Article  CAS  Google Scholar 

  • Sengupta P, Agarwal A, Pogrebetskaya M, Roychoudhury S, Durairajanayagam D, Henkel R. Role of Withania somnifera (Ashwagandha) in the management of male infertility. Reprod Biomed Online. 2018;36(3):311–26.

    Article  Google Scholar 

  • Sengupta P, Dutta S, Alahmar AT, D’souza UJA. Reproductive tract infection, inflammation and male infertility. Chem Biol Lett. 2020;7(2):75–84.

    CAS  Google Scholar 

  • Sharma R, Biedenharn KR, Fedor JM, Agarwal A. Lifestyle factors and reproductive health: taking control of your fertility. Reprod Biol Endocrinol. 2013;11(1):1–15.

    Article  Google Scholar 

  • Sheweita SA, Tilmisany AM, Al-Sawaf H. Mechanisms of male infertility: role of antioxidants. Curr Drug Metab. 2005;6(5):495–501.

    Article  CAS  Google Scholar 

  • Showell MG, Mackenzie-Proctor R, Brown J, Yazdani A, Stankiewicz MT, Hart RJ. Antioxidants for male subfertility. Cochrane Database Syst Rev. 2014;12:CD007411.

    Google Scholar 

  • Sigman M, Glass S, Campagnone J, Pryor JL. Carnitine for the treatment of idiopathic asthenospermia: a randomized, double-blind, placebo-controlled trial. Fertil Steril. 2006;85(5):1409–14.

    Article  Google Scholar 

  • Silver EW, Eskenazi B, Evenson DP, Block G, Young S, Wyrobek AJ. Effect of antioxidant intake on sperm chromatin stability in healthy nonsmoking men. J Androl. 2005;26(4):550–6.

    Article  CAS  Google Scholar 

  • Stanner S, Hughes J, Kelly C, Buttriss J. A review of the epidemiological evidence for the antioxidant hypothesis. Public Health Nutr. 2004;7(3):407–22.

    Article  CAS  Google Scholar 

  • Stenqvist A, Oleszczuk K, Leijonhufvud I, Giwercman A. Impact of antioxidant treatment on DNA fragmentation index: a double-blind placebo-controlled randomized trial. Andrology. 2018;6(6):811–6.

    Article  CAS  Google Scholar 

  • Torres-Arce E, Vizmanos B, Babio N, Márquez-Sandoval F, Salas-Huetos A. Dietary antioxidants in the treatment of male infertility: counteracting oxidative stress biology. Biology (Basel). 2021;10(3):241.

    CAS  Google Scholar 

  • Tsatsanis C, Dermitzaki E, Avgoustinaki P, Malliaraki N, Mytaras V, Margioris AN. The impact of adipose tissue-derived factors on the hypothalamic-pituitary-gonadal (HPG) axis. Hormones. 2015;14(4):549–62.

    Article  Google Scholar 

  • Tunc O, Thompson J, Tremellen K. Improvement in sperm DNA quality using an oral antioxidant therapy. Reprod Biomed Online. 2009;18(6):761–8.

    Article  CAS  Google Scholar 

  • Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552(2):335–44.

    Article  CAS  Google Scholar 

  • Tremellen K, Miari G, Froiland D, Thompson J. A randomised control trial examining the effect of an antioxidant (Menevit) on pregnancy outcome during IVF‐ICSI treatment. Australian and New Zealand Journal of Obstetrics and Gynaecology. 2007;47(3):216-21.

    Google Scholar 

  • Ufer C, Wang CC, Borchert A, Heydeck D, Kuhn H. Redox control in mammalian embryo development. Antioxid Redox Signal. 2010;13(6):833–75.

    Article  CAS  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84.

    Article  CAS  Google Scholar 

  • Vander Borght M, Wyns C. Fertility and infertility: definition and epidemiology. Clin Biochem. 2018;62:2–10.

    Article  Google Scholar 

  • Verma A, Kanwar K. Human sperm motility and lipid peroxidation in different ascorbic acid concentrations: an in vitro analysis. Andrologia. 1998;30(6):325–9.

    Article  CAS  Google Scholar 

  • Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334(6059):1081–6.

    Article  CAS  Google Scholar 

  • Wang C, Rogers M. Oxidative stress and fetal hypoxia. Reactive oxygen species and disease. Research Signpost; 2007. p. 257–82.

    Google Scholar 

  • Wendel A. Measurement of in vivo lipid peroxidation and toxicological significance. Free Radic Biol Med. 1987;3(5):355–8.

    Article  CAS  Google Scholar 

  • Willcox JK, Ash SL, Catignani GL. Antioxidants and prevention of chronic disease. Crit Rev Food Sci Nutr. 2004;44(4):275–95.

    Article  CAS  Google Scholar 

  • Yang Y, Song Y, Loscalzo J. Regulation of the protein disulfide proteome by mitochondria in mammalian cells. Proc Natl Acad Sci U S A. 2007;104(26):10813–7.

    Article  CAS  Google Scholar 

  • Zhang H, Limphong P, Pieper J, Liu Q, Rodesch CK, Christians E, et al. Glutathione-dependent reductive stress triggers mitochondrial oxidation and cytotoxicity. FASEB J. 2012;26(4):1442–51.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sengupta, P., Dutta, S., Alahmar, A.T. (2022). Reductive Stress and Male Infertility. In: Roychoudhury, S., Kesari, K.K. (eds) Oxidative Stress and Toxicity in Reproductive Biology and Medicine. Advances in Experimental Medicine and Biology, vol 1391. Springer, Cham. https://doi.org/10.1007/978-3-031-12966-7_17

Download citation

Publish with us

Policies and ethics