Skip to main content

List Covering of Regular Multigraphs

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2022)

Abstract

A graph covering projection, also known as a locally bijective homomorphism, is a mapping between vertices and edges of two graphs which preserves incidencies and is a local bijection. This notion stems from topological graph theory, but has also found applications in combinatorics and theoretical computer science.

It has been known that for every fixed simple regular graph H of valency greater than 2, deciding if an input graph covers H is NP-complete. In recent years, topological graph theory has developed into heavily relying on multiple edges, loops, and semi-edges, but only partial results on the complexity of covering multigraphs with semi-edges are known so far. In this paper we consider the list version of the problem, called List-\(H\text {-}\textsc {Cover}\), where the vertices and edges of the input graph come with lists of admissible targets. Our main result reads that the List-\(H\text {-}\textsc {Cover}\) problem is NP-complete for every regular multigraph H of valency greater than 2 which contains at least one semi-simple vertex (i.e., a vertex which is incident with no loops, with no multiple edges and with at most one semi-edge). Using this result we almost show the NP-co/polytime dichotomy for the computational complexity of List-\(H\text {-}\textsc {Cover}\) of cubic multigraphs, leaving just five open cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The proofs of statements marked with \((\spadesuit )\) will appear in the journal version of the paper.

References

  1. Abello, J., Fellows, M.R., Stillwell, J.C.: On the complexity and combinatorics of covering finite complexes. Aust. J. Combin. 4, 103–112 (1991)

    MathSciNet  MATH  Google Scholar 

  2. Angluin, D.: Local and global properties in networks of processors. In: Proceedings of the 12th ACM Symposium on Theory of Computing, pp. 82–93 (1980)

    Google Scholar 

  3. Bard, S., Bellitto, T., Duffy, C., MacGillivray, G., Yang, F.: Complexity of locally-injective homomorphisms to tournaments. Discret. Math. Theor. Comput. Sci. 20(2) (2018). http://dmtcs.episciences.org/4999

  4. Biggs, N.: Algebraic Graph Theory. Cambridge University Press, Cambridge (1974)

    Book  Google Scholar 

  5. Bílka, O., Jirásek, J., Klavík, P., Tancer, M., Volec, J.: On the complexity of planar covering of small graphs. In: Kolman, P., Kratochvíl, J. (eds.) WG 2011. LNCS, vol. 6986, pp. 83–94. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25870-1_9

    Chapter  Google Scholar 

  6. Bok, J., Fiala, J., Hliněný, P., Jedličková, N., Kratochvíl, J.: Computational complexity of covering multigraphs with semi-edges: small cases. In: Bonchi, F., Puglisi, S.J. (eds.) 46th International Symposium on Mathematical Foundations of Computer Science, MFCS 2021, 23–27 August 2021, Tallinn, Estonia. LIPIcs, vol. 202, pp. 21:1–21:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.MFCS.2021.21

  7. Bok, J., Fiala, J., Jedličková, N., Kratochvíl, J., Seifrtová, M.: Computational complexity of covering disconnected multigraphs. In: Bampis, E., Pagourtzis, A. (eds.) FCT 2021. LNCS, vol. 12867, pp. 85–99. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86593-1_6

    Chapter  Google Scholar 

  8. Chaplick, S., Fiala, J., van’t Hof, P., Paulusma, D., Tesař, M.: Locally constrained homomorphisms on graphs of bounded treewidth and bounded degree. Theor. Comput. Sci. 590, 86–95 (2015)

    Google Scholar 

  9. Djoković, D.Ž: Automorphisms of graphs and coverings. J. Combin. Theory B 16, 243–247 (1974)

    Article  MathSciNet  Google Scholar 

  10. Fiala, J.: NP completeness of the edge precoloring extension problem on bipartite graphs. J. Graph Theory 43(2), 156–160 (2003)

    Article  MathSciNet  Google Scholar 

  11. Fiala, J., Kratochvíl, J.: Complexity of partial covers of graphs. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 537–549. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45678-3_46

    Chapter  Google Scholar 

  12. Fiala, J., Kratochvíl, J.: Locally injective graph homomorphism: lists guarantee dichotomy. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 15–26. Springer, Heidelberg (2006). https://doi.org/10.1007/11917496_2

    Chapter  MATH  Google Scholar 

  13. Fiala, J.: Locally injective homomorphisms. Ph.D. thesis, Charles University, Prague (2000)

    Google Scholar 

  14. Fiala, J., Heggernes, P., Kristiansen, P., Telle, J.A.: Generalized \(H\)-coloring and \(H\)-covering of trees. Nordic J. Comput. 10(3), 206–224 (2003)

    MathSciNet  MATH  Google Scholar 

  15. Fiala, J., Klavík, P., Kratochvíl, J., Nedela, R.: Algorithmic aspects of regular graph covers with applications to planar graphs. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 489–501. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43948-7_41

    Chapter  Google Scholar 

  16. Fiala, J., Klavík, P., Kratochvíl, J., Nedela, R.: 3-connected reduction for regular graph covers. Eur. J. Comb. 73, 170–210 (2018)

    Article  MathSciNet  Google Scholar 

  17. Fiala, J., Kratochvíl, J.: Partial covers of graphs. Discuss. Math. Graph Theory 22, 89–99 (2002)

    Article  MathSciNet  Google Scholar 

  18. Fiala, J., Kratochvíl, J.: Locally constrained graph homomorphisms – structure, complexity, and applications. Comput. Sci. Rev. 2(2), 97–111 (2008)

    Article  Google Scholar 

  19. Fiala, J., Paulusma, D.: A complete complexity classification of the role assignment problem. Theoret. Comput. Sci. 1(349), 67–81 (2005)

    Article  MathSciNet  Google Scholar 

  20. Fiala, J., Klavík, P., Kratochvíl, J., Nedela, R.: Algorithmic aspects of regular graph covers (2016). https://arxiv.org/abs/1609.03013

  21. Gardiner, A.: Antipodal covering graphs. J. Combin. Theory B 16, 255–273 (1974)

    Article  MathSciNet  Google Scholar 

  22. Getzler, E., Kapranov, M.M.: Modular operads. Compos. Math. 110(1), 65–125 (1998)

    Article  MathSciNet  Google Scholar 

  23. Griggs, J.R., Yeh, R.K.: Labelling graphs with a condition at distance 2. SIAM J. Discret. Math. 5(4), 586–595 (1992). https://doi.org/10.1137/0405048

    Article  MathSciNet  MATH  Google Scholar 

  24. Gross, J.L., Tucker, T.W.: Generating all graph coverings by permutation voltage assignments. Discret. Math. 18, 273–283 (1977)

    Article  MathSciNet  Google Scholar 

  25. Kratochvíl, J., Proskurowski, A., Telle, J.A.: Complexity of colored graph covers I. Colored directed multigraphs. In: Möhring, R.H. (ed.) WG 1997. LNCS, vol. 1335, pp. 242–257. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0024502

    Chapter  MATH  Google Scholar 

  26. Kratochvíl, J., Proskurowski, A., Telle, J.A.: Covering regular graphs. J. Combin. Theory Ser. B 71(1), 1–16 (1997)

    Article  MathSciNet  Google Scholar 

  27. Kratochvíl, J., Proskurowski, A., Telle, J.A.: Complexity of graph covering problems. Nordic J. Comput. 5, 173–195 (1998)

    MathSciNet  MATH  Google Scholar 

  28. Kratochvíl, J., Telle, J.A., Tesař, M.: Computational complexity of covering three-vertex multigraphs. Theoret. Comput. Sci. 609, 104–117 (2016)

    Article  MathSciNet  Google Scholar 

  29. Kristiansen, P., Telle, J.A.: Generalized H-coloring of graphs. In: Goos, G., Hartmanis, J., van Leeuwen, J., Lee, D.T., Teng, S.-H. (eds.) ISAAC 2000. LNCS, vol. 1969, pp. 456–466. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-40996-3_39

    Chapter  Google Scholar 

  30. Kwak, J.H., Nedela, R.: Graphs and their coverings. Lect. Notes Ser. 17, 118 (2007)

    Google Scholar 

  31. Leighton, F.T.: Finite common coverings of graphs. J. Combin. Theory B 33, 231–238 (1982)

    Article  MathSciNet  Google Scholar 

  32. Malnič, A., Marušič, D., Potočnik, P.: Elementary abelian covers of graphs. J. Algebraic Combin. 20(1), 71–97 (2004)

    Article  MathSciNet  Google Scholar 

  33. Malnič, A., Nedela, R., Škoviera, M.: Lifting graph automorphisms by voltage assignments. Eur. J. Comb. 21(7), 927–947 (2000)

    Article  MathSciNet  Google Scholar 

  34. Mednykh, A.D., Nedela, R.: Harmonic Morphisms of Graphs: Part I: Graph Coverings. Vydavatelstvo Univerzity Mateja Bela v Banskej Bystrici, 1st edn. (2015)

    Google Scholar 

  35. Nedela, R., Škoviera, M.: Regular embeddings of canonical double coverings of graphs. J. Combin. Theory Ser. B 67(2), 249–277 (1996)

    Article  MathSciNet  Google Scholar 

  36. Okrasa, K., Rząażewski, P.: Subexponential algorithms for variants of the homomorphism problem in string graphs. J. Comput. Syst. Sci. 109, 126–144 (2020). https://doi.org/10.1016/j.jcss.2019.12.004

    Article  MathSciNet  MATH  Google Scholar 

  37. Ringel, G.: Map Color Theorem, vol. 209. Springer, Berlin (1974). https://doi.org/10.1007/978-3-642-65759-7

    Book  MATH  Google Scholar 

  38. Shepherd, S., Gardam, G., Woodhouse, D.J.: Two generalisations of Leighton’s theorem (2019). https://arxiv.org/abs/1908.00830

  39. Woodhouse, D.J.: Revisiting Leighton’s theorem with the Haar measure. Math. Proc. Camb. Philos. Soc. 170(3), 615–623 (2021). https://doi.org/10.1017/S0305004119000550

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Jan Bok and Nikola Jedličková were supported by research grant GAČR 20-15576S of the Czech Science Foundation and by SVV–2020–260578 and GAUK 1580119. Jiří Fiala and Jan Kratochvíl were supported by research grant GAČR 20-15576S of the Czech Science Foundation. Paweł Rzążewski was supported by the Polish National Science Centre grant no. 2018/31/D/ST6/00062. The last author is grateful to Karolina Okrasa and Marta Piecyk for fruitful and inspiring discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Bok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bok, J., Fiala, J., Jedličková, N., Kratochvíl, J., Rzążewski, P. (2022). List Covering of Regular Multigraphs. In: Bazgan, C., Fernau, H. (eds) Combinatorial Algorithms. IWOCA 2022. Lecture Notes in Computer Science, vol 13270. Springer, Cham. https://doi.org/10.1007/978-3-031-06678-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06678-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06677-1

  • Online ISBN: 978-3-031-06678-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics