Skip to main content

Complexity of Partial Covers of Graphs

  • Conference paper
  • First Online:
Algorithms and Computation (ISAAC 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2223))

Included in the following conference series:

Abstract

A graph G partially covers a graph H if it allows a locally injective homomorphism from G to H, i.e. an edge-preserving vertex mapping which is injective on the closed neighborhood of each vertex of G. The notion of partial covers is closely related to the generalized frequency assignment problem. We study the computational complexity of the question whether an input graph G partially covers a fixed graph H. Since this problem is at least as difficult as deciding the existence of a full covering projection (a locally bijective homomorphism), we concentrate on classes of problems (described by parameter graphs H) for which the full cover problem is polynomially solvable. In particular, we treat graphs H which contain at most two vertices of degree greater than two, and for such graphs we exhibit both NP-complete and polynomially solvable instances. The techniques are based on newly introduced notions of generalized matchings and edge precoloring extension of bipartite graphs.

Supported in part by Czech Research grant GAČR 201/99/0242 and GAUK 158/99.

Supported in part by Czech Research grants GAUK 158/99 and KONTAKT ME338.

Supported by the Ministry of Education of the Czech Republic as project LN00A056.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abello, J., Fellows, M. R., and Stillwell, J. C. On the complexity and combinatorics of covering finite complexes. Australian Journal of Combinatorics 4 (1991), 103–112.

    MathSciNet  MATH  Google Scholar 

  2. Angluin, D. Local and global properties in networks of processors. Proceedings of the 12th ACM Symposium on Theory of Computing (1980), 82–93.

    Google Scholar 

  3. Angluin, D., and Gardiner, A. Finite common coverings of pairs of regular graphs. Journal of Combinatorial Theory B 30 (1981), 184–187.

    Article  MathSciNet  MATH  Google Scholar 

  4. Biggs, N. Algebraic Graph Theory. Cambridge University Press, 1974.

    Google Scholar 

  5. Bodlaender, H. L. The classification of coverings of processor networks. Journal of Parallel Distributed Computing 6 (1989), 166–182.

    Article  Google Scholar 

  6. Chang, G. J., and Kuo, D. The L(2, 1)-labeling problem on graphs. SIAM Journal of Discrete Mathematics 9, 2 (May 1996), 309–316.

    Article  MathSciNet  MATH  Google Scholar 

  7. Courcelle, B., and Métivier, Y. Coverings and minors: Applications to local computations in graphs. European Journal of Combinatorics 15 (1994), 127–138.

    Article  MathSciNet  MATH  Google Scholar 

  8. Fiala, J. The NP completeness of the edge precoloring extension problem on bipartite graphs. submitted.

    Google Scholar 

  9. Fiala, J. Locally injective homomorphisms. PhD thesis, Charles University, Prague, 2000.

    Google Scholar 

  10. Fiala, J., and Kratochvíl, J. Partial covers of graphs. submitted.

    Google Scholar 

  11. Fiala, J., Kratochvíl, J., and Kloks, T. Fixed-parameter tractability of λ-colorings. In Graph-Theoretical Concepts in Computer Science, 25th WG’ 99, Ascona (1999), no. 1665 in LNCS, Springer Verlag, pp. 350–363.

    Chapter  Google Scholar 

  12. Fotakis, D. A., Nikoletseas, S. E., Papadopoulou, V. G., and Spirakis, P. G. NP-completeness results and efficient approximations for radiocoloring in planar graphs. In MFCS (2000), no. 1893 in LNCS, Springer Verlag, pp. 363–372.

    Google Scholar 

  13. Georges, J. P., Mauro, D. W., and Whittlesey, M. A. Relating path coverings to vertex labellings with a condition at distance two. Discrete Mathematics 135 (1994), 103–111.

    Article  MathSciNet  MATH  Google Scholar 

  14. Griggs, J. R., and Yeh, R. K. Labelling graphs with a condition at distance 2. SIAM Journal of Discrete Mathematics 5, 4 (Nov 1992), 586–595.

    Article  MathSciNet  MATH  Google Scholar 

  15. Holyer, I. The NP-completeness of edge coloring. SIAM Journal of Computing 10, 4(1981), 718–720.

    Article  MathSciNet  MATH  Google Scholar 

  16. Kratochvíl, J. Perfect codes in general graphs. Academia Praha, 1991.

    Google Scholar 

  17. Kratochvíl, J., Proskurowski, A., and Telle, J. A. Covering directed multigraphs I. colored directed multigraphs. In Graph-Theoretical Concepts in Comp. Sci., 23rd WG’ 97, Berlin (1997), no. 1335 in LNCS, Springer Verlag, pp. 242–257.

    Chapter  Google Scholar 

  18. Kratochvíl, J., Proskurowski, A., and Telle, J. A. Covering regular graphs. Journal of Combinatorial Theory B 71, 1 (Sept 1997), 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  19. Kratochvíl, J., Proskurowski, A., and Telle, J. A. Complexity of graph covering problems. Nordic Journal of Computing 5 (1998), 173–195.

    MathSciNet  MATH  Google Scholar 

  20. Kratochvíl, J., and Sebö, A. Coloring precolored perfect graphs. Journal of Graph Theory 25, 3(1997), 207–215.

    Article  MathSciNet  MATH  Google Scholar 

  21. Kristiansen, P., and Telle, J. A. Generalized H-coloring of graphs. In International Symposium on Algorithms And Computation, 7th ISAAC’ 00, Taipei (2000), no. 1969 in LNCS, pp. 456–466. Springer Verlag

    MATH  Google Scholar 

  22. Leighton, F. T. Finite common coverings of graphs. Journal of Combinatorial Theory B 33 (1982), 231–238.

    Article  MathSciNet  MATH  Google Scholar 

  23. Lovász, L., and Plummer, M. D. Matching Theory. Akadémiai Kiadó, Budapest, 1986.

    MATH  Google Scholar 

  24. Sakai, D. Labeling chordal graphs: distance two condition. SIAM Journal of Discrete Mathematics 7, 1 (February 1994), 133–140.

    Article  MathSciNet  MATH  Google Scholar 

  25. Telle, J. A. Complexity of domination-type problems in graphs Nordic Journal of Computing 1 (1994), 157–171.

    MathSciNet  Google Scholar 

  26. van den Heuvel, J., Leese, R. A., and Shepherd, M. A. Graph labeling and radio channel assignment. Journal of Graph Theory 29, 4 (1998), 263–283.

    Article  MathSciNet  MATH  Google Scholar 

  27. Yeh, K.-C. Labeling graphs with a condition at distance two. PhD thesis, University of South Carolina, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fiala, J., Kratochvíl, J. (2001). Complexity of Partial Covers of Graphs. In: Eades, P., Takaoka, T. (eds) Algorithms and Computation. ISAAC 2001. Lecture Notes in Computer Science, vol 2223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45678-3_46

Download citation

  • DOI: https://doi.org/10.1007/3-540-45678-3_46

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42985-2

  • Online ISBN: 978-3-540-45678-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics