Skip to main content

Characterization of Spaces and Didactic Units for the Improvement of Diversity Gaps

  • Conference paper
  • First Online:
Learning and Collaboration Technologies. Designing the Learner and Teacher Experience (HCII 2022)

Abstract

Currently, most educational centers have specific spaces where, depending on the technology available in them, specific practices are carried out. Some examples of these spaces are the computer labs, electronics, biology, chemistry, or maker spaces. The CreaSTEAM project aims to create STEAM spaces in schools, so that they are multidisciplinary and transversal spaces where elements and technologies of all kinds coexist, and above all, rather than being focused on technology, they are focused on the development of STEAM skills and vocations, especially to reduce gaps in diversity. This article focuses on the design of an instrument that allows the conceptualization of STEAM practices in these new educational environments, contemplating and relating both educational methodologies, technologies, and diversity gaps to be solved or studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Howard, G.R.: As diversity grows, so must we. Educ. Leadersh. 64, 16–22 (2007)

    Google Scholar 

  2. Fonseca, D.,et al.: CreaSTEAM. Hacia la mejora de brechas en diversidad mediante la recopilación de proyectos, buenas prácticas y espacios STEAM - [CreaSTEAM. Towards the improvement of diversity gaps through the compilation of projects, best practices and STEAM spaces]. In: Maria Luisa Sein-Echaluce, Ángel Fidalgo Blanco, F.J.G.-P. (ed.) In: Sein-Echaluce Lacleta, M.L., Fidalgo-Blanco, Á., García-Peñalvo, F.J. (eds.) Innovaciones docentes en tiempos de pandemia. Actas del VI Congreso In-ternacional sobre Aprendizaje, Innovación y Coope-ración, CINAIC 2021 (20–22 de Octubre de 2021, Madrid. pp. 38–43. Servicio de Publicaciones. Universidad de Zaragoza, Madrid (2021). https://doi.org/10.26754/cinaic.2021.0007

  3. Tsui, L.: Effective strategies to increase diversity in STEM fields: A review of the research literature. J. Negro Educ. 76, 555–581 (2007)

    Google Scholar 

  4. Unesco: Be part of the change! STEM and Gender Advancement (SAGA): improved measurement of gender equality in science, technology, engineering and mathematics (2016). https://unesdoc.unesco.org/in/documentViewer.xhtml?v=2.1.196&id=p::usmarcdef_0000244375&file=/in/rest/annotationSVC/DownloadWatermarkedAttachment/attach_import_9f397934-5f24-49cd-abd4-1b2871916831%3F_%3D244375eng.pdf&locale=en&multi=true&ark=/ark:/48223/p.

  5. García-Peñalvo, F.J., Bello, A., Dominguez, A., Romero Chacón, R.M.: Gender balance actions, policies and strategies for STEM: Results from a world café conversation. Educ. Knowl. Soc. 20, (2019). https://doi.org/10.14201/eks2019_20_a31

  6. García-Holgado, A., Camacho Díaz, A., García-Peñalvo, F.J.: La brecha de género en el sector STEM en América Latina: una propuesta europea. V Congr. Int. sobre Aprendizaje, Innovación y Compet. 704–709 (2019). https://doi.org/10.26754/cinaic.2019.0143

  7. García-Holgado, A., Díaz, A.C., García-Pẽalvo, F.J.: Engaging women into STEM in Latin America: W-STEM project. In: Conde-González, M.Á., Rodríguez-Sedano, F.J., Fernández-Llamas, C., García-Peñalvo, F.J. (eds.) PervasiveHealth: Pervasive Computing Technologies for Healthcare. pp. 232–239. ACM, New York (2019). https://doi.org/10.1145/3362789.3362902

  8. Garcia-Holgado, A., et al.: Gender equality in STEM programs: A proposal to analyse the situation of a university about the gender gap. In: IEEE Global Engineering Education Conference, EDUCON, pp. 1824–1830 (2020). https://doi.org/10.1109/EDUCON45650.2020.9125326

  9. Conde, M., Rodríguez-Sedano, F.J., Fernández-Llamas, C., Gonçalves, J., Lima, J., García-Peñalvo, F.J.: Fostering STEAM through challenge-based learning, robotics, and physical devices: A systematic mapping literature review. Comput. Appl. Eng. Educ. 29, 46–65 (2021). https://doi.org/10.1002/cae.22354

    Article  Google Scholar 

  10. Amo, D., et al.: CreaSTEAM. Towards the improvement of diversity gaps through the compilation of projects, best practices and STEAM-Lab spaces. In: ACM International Conference Proceeding Series, pp. 92–97. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3486011.3486426

  11. Schneider, M., Preckel, F.: Variables associated with achievement in higher education: A systematic review of meta-analyses. Psychol. Bull. 143, 565–600 (2017). https://doi.org/10.1037/bul0000098

    Article  Google Scholar 

  12. Mariscal, G., Jiménez, E., Vivas-Urias, M.D., Redondo-Duarte, S., Moreno-Pérez, S.: Virtual reality simulation-based learning. Educ. Knowl. Soc. 21 (2020). https://doi.org/10.14201/eks.20809

  13. Gabster, B.P., van Daalen, K., Dhatt, R., Barry, M.: Challenges for the female academic during the COVID-19 pandemic (2020). https://doi.org/10.1016/S0140-6736(20)31412-4

  14. Kumi-Yeboah, A., Kim, Y., Sallar, A.M., Kiramba, L.K.: Exploring the use of digital technologies from the perspective of diverse learners in online learning environments. Online Learn. J. 24, 42–63 (2020). https://doi.org/10.24059/olj.v24i4.2323

  15. Sivapunniam, N.: Virtual realities: A blended learning approach to bridge the gap between diverse ESL learners. Lang. Cult. Ceating Foster. Glob. Communities, 283–290 (2005)

    Google Scholar 

  16. Delamarre, A., Shernoff, E., Buche, C., Frazier, S., Gabbard, J., Lisetti, C.: The interactive virtual training for teachers (IVT-T) to practice classroom behavior management. Int. J. Hum. Comput. Stud. 152 (2021). https://doi.org/10.1016/j.ijhcs.2021.102646

  17. Sveinbjörnsdóttir, B., Jóhannsson, S.H., Oddsdóttir, J., Sigurðardóttir, T.Þ, Valdimarsson, G.I., Vilhjálmsson, H.H.: Virtual discrete trial training for teacher trainees. J. Multimodal User Inter. 13(1), 31–40 (2019). https://doi.org/10.1007/s12193-018-0288-9

    Article  Google Scholar 

  18. Guerrero, M.V.L., Jiménez, T.L.: Using virtual platform for giving feedback in teachers’ training. Pensam. Educ. 56 (2019). https://doi.org/10.7764/PEL.56.2.2019.5

  19. Stavroulia, K.E., Christofi, M., Baka, E., Michael-Grigoriou, D., Magnenat-Thalmann, N., Lanitis, A.: Assessing the emotional impact of virtual reality-based teacher training. Int. J. Inf. Learn. Technol. 36, 192–217 (2019). https://doi.org/10.1108/IJILT-11-2018-0127

    Article  Google Scholar 

  20. Gil-Fernández, R., León-Gómez, A., Calderón-Garrido, D.: Influence of covid on the educational use of social media by students of teaching degrees. Educ. Knowl. Soc. 22 (2021). https://doi.org/10.14201/eks.23623

  21. Hepp K, P., Prats Fernández, M.À., Holgado García, J.: Int. J. Educ. Technol. High. Educ. 12(2), 30–43 (2015). https://doi.org/10.7238/rusc.v12i2.2458

    Article  Google Scholar 

  22. Ally, M.: Competency profile of the digital and online teacher in future education. Int. Rev. Res. Open Distance Learn. 20, 302–318 (2019). https://doi.org/10.19173/irrodl.v20i2.4206

  23. Guasch, T., Alvarez, I., Espasa, A.: University teacher competencies in a virtual teaching/learning environment: Analysis of a teacher training experience. Teach. Teach. Educ. 26, 199–206 (2010). https://doi.org/10.1016/j.tate.2009.02.018

    Article  Google Scholar 

  24. Galikhanov, M.F., Khasanova, G.F.: Faculty training for online teaching: Roles, Competences, Contents. Vyss. Obraz. v Ross. 28, 51–62 (2019). https://doi.org/10.31992/0869-3617-2019-28-2-51-62

  25. Bautista, M.A., Cipagauta, M.E.: Didactic trends and perceived teachers’ training needs in higher education: A case study. Int. J. Cogn. Res. Sci. Eng. Educ. 7, 71–85 (2019). https://doi.org/10.5937/IJCRSEE1903071B

    Article  Google Scholar 

  26. Artacho, E.G., Martínez, T.S., Ortega Martín, J.L., Marín Marín, J.A., García, G.G.: Teacher training in lifelong learning-the importance of digital competence in the encouragement of teaching innovation. Sustain. 12 (2020). https://doi.org/10.3390/su12072852

  27. Gorozidis, G., Papaioannou, A.G.: Teachers’ motivation to participate in training and to implement innovations. Teach. Teach. Educ. 39, 1–11 (2014). https://doi.org/10.1016/j.tate.2013.12.001

    Article  Google Scholar 

  28. Boice, K.L., Jackson, J.R., Alemdar, M., Rao, A.E., Grossman, S., Usselman, M.: Supporting teachers on their STEAM journey: A collaborative STEAM teacher training program. Educ. Sci. 11, 1–20 (2021). https://doi.org/10.3390/educsci11030105

    Article  Google Scholar 

  29. Campanyà, C., Fonseca, D., Amo, D., Martí, N., Peña, E.: Mixed analysis of the flipped classroom in the concrete and steel structures subject in the context of covid‐19 crisis outbreak. A pilot study. Sustain. 13 (2021). https://doi.org/10.3390/su13115826

  30. García-Peñalvo, F.J., Corell, A., Abella-García, V., Grande, M.: Online assessment in higher education in the time of COVID-19. Educ. Knowl. Soc. 21 (2020). https://doi.org/10.14201/eks.23013

  31. García-Peñalvo, F.J., Corell, A.: The CoVId-19: The enzyme of the digital transformation of teaching or the reflection of a methodological and competence crisis in higher education? Campus Virtuales. 9, 83–98 (2020)

    Google Scholar 

  32. Knopik, T., Oszwa, U.: E-Cooperative problem solving as a strategy for learning mathematics during the COVID-19 pandemic. Educ. Knowl. Soc. 22, e25176–e25176 (2021). https://doi.org/10.14201/eks.25176

  33. García-Peñalvo, F.J., Fidalgo-Blanco, Á., Sein-Echaluce, M.L., Conde, M.Á.: Cooperative micro flip teaching. In: Zaphiris, P., Ioannou, A. (eds.) LCT 2016. LNCS, vol. 9753, pp. 14–24. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39483-1_2

    Chapter  Google Scholar 

  34. Sein-Echaluce, M.L., Fidalgo-Blanco, Á., Balbín, A.M., García-Peñalvo, F.J.: Flipped classroom insights after nine-year experience applying the method. In: in Alier, M., Fonseca, D. (ed.) ACM International Conference Proceeding Series, pp. 266–270. ACM, New York, Barcelona, October 27–29, 2021 (2021). https://doi.org/10.1145/3486011.3486458

  35. Dell'Erba, M.: Preparing students for learning, work and life through STEAM education. Policy Brief, Educ. Comm. States, Arts Educ. Partnersh. 1–12 (2019)

    Google Scholar 

  36. McCusker, J.R., Burch, A.S., Andrade, J.M.: Work study play! In: ASEE Annual Conference and Exposition, Conference Proceedings (2020).https://doi.org/10.1007/978-3-030-35922-5_2

  37. Ruiz, E.: Analyzing gender disparities in STEAM: A case study from bioinformatics workshops in the University of Granada. Enseñanza y Aprendiz. Ing. Comput. (2020). https://doi.org/10.30827/digibug.53241

  38. Taylor, P.C., Taylor, E.: Transformative STEAM education for sustainable development. In: Empowering Science and Mathematics for Global Competitiveness, pp. 125–131 (2020). https://doi.org/10.1201/9780429461903-19

  39. Quigley, C.F., Herro, D.: “Finding the joy in the unknown”: Implementation of STEAM teaching practices in middle school science and math classrooms. J. Sci. Educ. Technol. 25(3), 410–426 (2016). https://doi.org/10.1007/s10956-016-9602-z

    Article  Google Scholar 

  40. Conner, L.D.C., Tzou, C., Tsurusaki, B.K., Guthrie, M., Pompea, S., Teal-Sullivan, P.: Designing STEAM for broad participation in science. Creat. Educ. 08, 2222–2231 (2017). https://doi.org/10.4236/ce.2017.814152

    Article  Google Scholar 

  41. Liao, C.: Creating a STEAM map: A content analysis of visual art practices in STEAM education. In: Khine, M.S., Areepattamannil, S. (eds.) STEAM Education, pp. 37–55. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-04003-1_3

    Chapter  Google Scholar 

  42. Allina, B.: The development of STEAM educational policy to promote student creativity and social empowerment. Arts Educ. Policy Rev. 119, 77–87 (2018). https://doi.org/10.1080/10632913.2017.1296392

    Article  Google Scholar 

  43. Quigley, C.F., Herro, D., King, E., Plank, H.: STEAM designed and enacted: Understanding the process of design and implementation of STEAM curriculum in an elementary school. J. Sci. Educ. Technol. 29(4), 499–518 (2020). https://doi.org/10.1007/s10956-020-09832-w

    Article  Google Scholar 

  44. MacDonald, A., Hunter, J., Wise, K., Fraser, S.: STEM and STEAM and the spaces between: An overview of education agendas pertaining to ‘Disciplinarity’ across three Australian States. J. Res. STEM Educ. 5, 75–92 (2019). https://doi.org/10.51355/jstem.2019.64

  45. Ramey, K.E.: FUSE Studios: Bringing Interest-driven, Integrated-STEAM Learning into Schools via Makerspaces. http://ezphost.dur.ac.uk/login?url=https://www.proquest.com/docview/1964250413?accountid=14533%0Ahttp://palimpsest.dur.ac.uk/openurl/?genre=dissertations+%26+theses&issn=&title=FUSE+Studios%3A+Bringing+Interest-driven%2C+Integrated-STEAM+Learning+into+Sch, (2017)

  46. Stevens, R., et al..: Exploring the adoption, spread, and sustainability of an informal steam learning innovation in schools. In: Proceedings of International Conference of the Learning Sciences, ICLS, pp. 1203–1210 (2018)

    Google Scholar 

  47. García-Peñalvo, F.J., Alarcón, H., Dominguez, A.: Active learning experiences in engineering education (2019)

    Google Scholar 

  48. Alonso De Castro, M.G., García-Peñalvo, F.J.: Overview of European educational projects on eLearning and related methodologies: Data from Erasmus+ Project Results Platform. In: ACM International Conference Proceeding Series, pp. 291–298. IGI Global (2020). https://doi.org/10.1145/3434780.3436550

  49. Vicente, F.R., Llinares, A.Z., Sánchez, N.M.: “Sustainable City”: A steam project using robotics to bring the city of the future to primary education students. Sustain. 12, 1–21 (2020). https://doi.org/10.3390/su12229696

    Article  Google Scholar 

  50. Boytchev, P., Boytcheva, S.: Gamified evaluation in STEAM for higher education: A case study. Inf. 11 (2020). https://doi.org/10.3390/info11060316

  51. Bertrand, M.G., Namukasa, I.K.: STEAM education: Student learning and transferable skills. J. Res. Innov. Teach. Learn. 13, 43–56 (2020). https://doi.org/10.1108/jrit-01-2020-0003

    Article  Google Scholar 

  52. Bassachs, M., Cañabate, D., Nogué, L., Serra, T., Bubnys, R., Colomer, J.: Fostering critical reflection in primary education through STEAM approaches. Educ. Sci. 10, 1–14 (2020). https://doi.org/10.3390/educsci10120384

    Article  Google Scholar 

  53. Vicente, F.R., Zapatera Llinares, A., Montes Sánchez, N.: Curriculum analysis and design, implementation, and validation of a STEAM project through educational robotics in primary education. Comput. Appl. Eng. Educ. 29, 160–174 (2021). https://doi.org/10.1002/cae.22373

    Article  Google Scholar 

  54. Fonseca, D., Redondo, E., Villagrasa, S.: Mixed-methods research: a new approach to evaluating the motivation and satisfaction of university students using advanced visual technologies. Univ. Access Inf. Soc. 14(3), 311–332 (2014). https://doi.org/10.1007/s10209-014-0361-4

    Article  Google Scholar 

  55. Fonseca, D., Canaleta, X., Climent, A.: Evaluación de la usabilidad y la satisfacción del estudiante de formación profesional en función de su motivación inicial: Curso de comercio electrónico mediante metodologia SCC Curso de comercio electrónico mediante metodologia SCC. In: Iberian Conference on Information Systems and Technologies, CISTI (2017). https://doi.org/10.23919/CISTI.2017.7975915

  56. Fonseca, D., García-Peñalvo, F.J.: Interactive and collaborative technological ecosystems for improving academic motivation and engagement. Univ. Access Inf. Soc. 18(3), 423–430 (2019). https://doi.org/10.1007/s10209-019-00669-8

    Article  Google Scholar 

  57. Petchamé, J., Iriondo, I., Riu, D., Masi, T., Almajano, A., Fonseca, D.: Project based learning or the rethinking of an engineering subject: Measuring motivation. In: García-Peñalvo, F.J. (ed.) ACM International Conference Proceeding Series, pp. 267–272 (2020). https://doi.org/10.1145/3434780.3436542

  58. Fonseca, D., Villagrasa, S., Valls, F., Redondo, E., Climent, A., Vicent, L.: Motivation assessment in engineering students using hybrid technologies for 3D visualization. In: 2014 International Symposium on Computers in Education, SIIE 2014, pp. 111–116 (2014). https://doi.org/10.1109/SIIE.2014.7017714

  59. Sanchez-Sepulveda, M. V., et al.: Evaluation of an interactive educational system in urban knowledge acquisition and representation based on students’ profiles. Expert Syst. 37 (2020). https://doi.org/10.1111/exsy.12570

  60. Fonseca, D., Valls, F., Redondo, E., Villagrasa, S.: Informal interactions in 3D education: Citizenship participation and assessment of virtual urban proposals. Comput. Human Behav. 55, 504–518 (2016). https://doi.org/10.1016/j.chb.2015.05.032

    Article  Google Scholar 

  61. Fonseca, D., et al.: Mixed assessment of virtual serious games applied in architectural and urban design education. Sensors 21 (2021). https://doi.org/10.3390/s21093102

  62. Sanchez-Sepulveda, M., Fonseca, D., Franquesa, J., Redondo, E.: Virtual interactive innovations applied for digital urban transformations. Mixed approach. Futur. Gener. Comput. Syst. 91, 371–381 (2019). https://doi.org/10.1016/j.future.2018.08.016

    Article  Google Scholar 

  63. Khine, M.S.: STEAM education theory and practice. In: STEAM Education, p. 192 (2019)

    Google Scholar 

Download references

Acknowledgments

With the support of the Erasmus+ Programme of the European Union in its Key Action 2 “Cooperation and Innovation for Good Practices. Strategic Partnerships for school education”. Project CreaSTEAM (Co-thinking and Creation for STEAM diversity-gap reduction) (Reference number 2020–1-ES01-KA201–082601). The content of this publication does not reflect the official opinion of the European Union. Responsibility for the information and views expressed in the publication lies entirely with the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Fonseca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fonseca, D. et al. (2022). Characterization of Spaces and Didactic Units for the Improvement of Diversity Gaps. In: Zaphiris, P., Ioannou, A. (eds) Learning and Collaboration Technologies. Designing the Learner and Teacher Experience. HCII 2022. Lecture Notes in Computer Science, vol 13328. Springer, Cham. https://doi.org/10.1007/978-3-031-05657-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05657-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05656-7

  • Online ISBN: 978-3-031-05657-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics