Skip to main content

Sensors and Biosensors in Organs-on-a-Chip Platforms

  • Chapter
  • First Online:
Microfluidics and Biosensors in Cancer Research

Abstract

Biosensors represent a powerful analytical tool for analyzing biomolecular interactions with the potential to achieve real-time quantitative analysis with high accuracy using low sample volumes, minimum sample pretreatment with high potential for the development of in situ and highly integrated monitoring platforms. Considering these advantages, their use in cell-culture systems has increased over the last few years. Between the different technologies for cell culture, organs-on-a-chip (OOCs) represent a novel technology that tries to mimic an organ’s functionality by combining tissue engineering/organoid with microfluidics. Although there are still challenges to achieving OOC models with high organ mimicking relevance, these devices can offer effective models for drug treatment development by identifying drug targets, screening toxicity, and determining the potential effects of drugs in living beings. Consequently, in the future, we might replace animal studies by offering more ethical test models. Considering the relevance that different physiological and biochemical parameters have in the correct functionality of cells, sensing and biosensing platforms can offer an effective way for the real-time monitoring of physiological parameters and, in our opinion, more relevant, the secretion of biomarkers such as cytokines, growth factors, and others related with the influence of drugs or other types of stimulus in cell metabolism. Keeping this concept in mind, in this chapter, we focus on describing the potential use of sensors and biosensors in OOC devices to achieve fully integrated platforms that monitor physiological parameters and cell metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 14 August 2022

    This book was inadvertently published with an incorrect spelling of the author’s name in Chapter 3 as Sheeza Mugal whereas it should be Sheeza Mughal.

References

  1. Biosensors market by type, product, technology, application. COVID-19 impact analysis. MarketsandMarkets™. https://www.marketsandmarkets.com/Market-Reports/biosensors-market-798.html. Accessed 27 Aug 2021

  2. IUPAC - biosensor (B00663). https://goldbook.iupac.org/terms/view/B00663. Accessed 27 Aug 2021

  3. Kaur H, Shorie M (2019) Nanomaterial based aptasensors for clinical and environmental diagnostic applications. Nanoscale Adv 1(6):2123–2138. https://doi.org/10.1039/C9NA00153K

    Article  CAS  Google Scholar 

  4. Dahlin AB, Tegenfeldt JO, Höök F (2006) Improving the instrumental resolution of sensors based on localized surface plasmon resonance. Anal Chem 78(13):4416–4423. https://doi.org/10.1021/AC0601967

    Article  CAS  PubMed  Google Scholar 

  5. Vigneshvar S, Sudhakumari CC, Senthilkumaran B, Prakash H (2016) Recent advances in biosensor technology for potential applications – an overview. Front Bioeng Biotechnol 4:11. https://doi.org/10.3389/FBIOE.2016.00011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yakoh A, Pimpitak U, Rengpipat S, Hirankarn N, Chailapakul O, Chaiyo S (2021) Paper-based electrochemical biosensor for diagnosing COVID-19: detection of SARS-CoV-2 antibodies and antigen. Biosens Bioelectron 176:112912. https://doi.org/10.1016/J.BIOS.2020.112912

    Article  CAS  PubMed  Google Scholar 

  7. Bragazzi NL, Amicizia D, Panatto D, Tramalloni D, Valle I, Gasparini R (2015) Quartz-crystal microbalance (QCM) for public health: an overview of its applications. Adv Protein Chem Struct Biol 101:149–211. https://doi.org/10.1016/BS.APCSB.2015.08.002

    Article  CAS  PubMed  Google Scholar 

  8. da Silva ETSG, Souto DEP, Barragan JTC, de F Giarola J, de Moraes ACM, Kubota LT (2017) Electrochemical biosensors in point-of-care devices: recent advances and future trends. ChemElectroChem 4(4):778–794. https://doi.org/10.1002/CELC.201600758

    Article  Google Scholar 

  9. Zhu C, Yang G, Li H, Du D, Lin Y (2014) Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 87(1):230–249. https://doi.org/10.1021/AC5039863

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang J (2006) Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens Bioelectron 21(10):1887–1892. https://doi.org/10.1016/J.BIOS.2005.10.027

    Article  CAS  PubMed  Google Scholar 

  11. Deng X et al (2016) A highly sensitive immunosorbent assay based on biotinylated graphene oxide and the quartz crystal microbalance. ACS Appl Mater Interfaces 8(3):1893–1902. https://doi.org/10.1021/ACSAMI.5B10026

    Article  CAS  PubMed  Google Scholar 

  12. Atay S, Pişkin K, Yılmaz F, Çakır C, Yavuz H, Denizli A (2015) Quartz crystal microbalance based biosensors for detecting highly metastatic breast cancer cells via their transferrin receptors. Anal Methods 8(1):153–161. https://doi.org/10.1039/C5AY02898A

    Article  CAS  Google Scholar 

  13. Dubiel EA, Martin B, Vigier S, Vermette P (2017) Real-time label-free detection and kinetic analysis of etanercept—protein a interactions using quartz crystal microbalance. Colloids Surf B Biointerfaces 149:312–321. https://doi.org/10.1016/J.COLSURFB.2016.10.036

    Article  CAS  PubMed  Google Scholar 

  14. Reviakine I, Johannsmann D, Richter RP (2011) Hearing what you cannot see and visualizing what you hear: interpreting quartz crystal microbalance data from solvated interfaces. Anal Chem 83(23):8838–8848. https://doi.org/10.1021/AC201778H

    Article  CAS  PubMed  Google Scholar 

  15. Lopez GA, Estevez M-C, Soler M, Lechuga LM (2017) Recent advances in nanoplasmonic biosensors: applications and lab-on-a-chip integration. Nano 6(1):123–136. https://doi.org/10.1515/NANOPH-2016-0101

    Article  CAS  Google Scholar 

  16. Garland PB (1996) Optical evanescent wave methods for the study of biomolecular interactions. Q Rev Biophys 29(1):91–117. https://doi.org/10.1017/S0033583500005758

    Article  CAS  PubMed  Google Scholar 

  17. Hutchinson AM (1995) Evanescent wave biosensors. Mol Biotechnol 3(1):47–54. https://doi.org/10.1007/BF02821334

    Article  CAS  PubMed  Google Scholar 

  18. Fan X, White IM, Shopova SI, Zhu H, Suter JD, Sun Y (2008) Sensitive optical biosensors for unlabeled targets: a review. Anal Chim Acta 620(1–2):8–26. https://doi.org/10.1016/J.ACA.2008.05.022

    Article  CAS  PubMed  Google Scholar 

  19. Vollmer F, Arnold S (2008) Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat Methods 5(7):591–596. https://doi.org/10.1038/nmeth.1221

    Article  CAS  PubMed  Google Scholar 

  20. Kozma P, Kehl F, Ehrentreich-Förster E, Stamm C, Bier FF (2014) Integrated planar optical waveguide interferometer biosensors: a comparative review. Biosens Bioelectron 58:287–307. https://doi.org/10.1016/J.BIOS.2014.02.049

    Article  CAS  PubMed  Google Scholar 

  21. Nguyen HH, Park J, Kang S, Kim M (May 2015) Surface plasmon resonance: a versatile technique for biosensor applications. Sensors 15(5):10481–10510. https://doi.org/10.3390/S150510481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jason-Moller L, Murphy M, Bruno JA (2006) Overview of Biacore systems and their applications. Curr Protoc Protein Sci 19:1–14. https://doi.org/10.1002/0471140864.ps1913s45

    Article  Google Scholar 

  23. Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377(3):528–539. https://doi.org/10.1007/S00216-003-2101-0

    Article  CAS  PubMed  Google Scholar 

  24. Long S et al (2020) Grating coupled SPR sensors using off the shelf compact discs and sensitivity dependence on grating period. Sens Actuators Rep 2(1):100016. https://doi.org/10.1016/J.SNR.2020.100016

    Article  Google Scholar 

  25. Peng W, Liu Y (2021) Fiber-optic surface plasmon resonance sensors and biochemical applications: a review. J Light Technol 39(12):3781–3791. https://www.osapublishing.org/abstract.cfm?uri=jlt-39-12-3781

    Article  Google Scholar 

  26. Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111(6):3828–3857. https://doi.org/10.1021/CR100313V

    Article  CAS  PubMed  Google Scholar 

  27. Pothipor C, Jakmunee J, Bamrungsap S, Ounnunkad K (2021) An electrochemical biosensor for simultaneous detection of breast cancer clinically related microRNAs based on a gold nanoparticles/graphene quantum dots/graphene oxide film. Analyst 146(12):4000–4009. https://doi.org/10.1039/D1AN00436K

    Article  CAS  PubMed  Google Scholar 

  28. Tanak AS, Muthukumar S, Krishnan S, Schully KL, Clark DV, Prasad S (2021) Multiplexed cytokine detection using electrochemical point-of-care sensing device towards rapid sepsis endotyping. Biosens Bioelectron 171:112726. https://doi.org/10.1016/J.BIOS.2020.112726

    Article  CAS  PubMed  Google Scholar 

  29. Huang L et al (2021) One-step rapid quantification of SARS-CoV-2 virus particles via low-cost nanoplasmonic sensors in generic microplate reader and point-of-care device. Biosens Bioelectron 171:112685. https://doi.org/10.1016/J.BIOS.2020.112685

    Article  CAS  PubMed  Google Scholar 

  30. Masterson AN, Liyanage T, Kaimakliotis H, Derami HG, Deiss F, Sardar R (2020) Bottom-up fabrication of plasmonic nanoantenna-based high-throughput multiplexing biosensors for ultrasensitive detection of microRNAs directly from cancer Patients’ plasma. Anal Chem 92(13):9295–9304. https://doi.org/10.1021/ACS.ANALCHEM.0C01639

    Article  CAS  PubMed  Google Scholar 

  31. Bakhshpour M, Piskin AK, Yavuz H, Denizli A (2019) Quartz crystal microbalance biosensor for label-free MDA MB 231 cancer cell detection via notch-4 receptor. Talanta 204:840–845. https://doi.org/10.1016/J.TALANTA.2019.06.060

    Article  CAS  PubMed  Google Scholar 

  32. Jandas PJ, Luo J, Quan A, Li C, Chen F, Fu YQ (2020) Graphene oxide-au nano particle coated quartz crystal microbalance biosensor for the real time analysis of carcinoembryonic antigen. RSC Adv 10(7):4118–4128. https://doi.org/10.1039/C9RA09963H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ferhan AR, Jackman JA, Park JH, Cho NJ (2018) Nanoplasmonic sensors for detecting circulating cancer biomarkers. Adv Drug Deliv Rev 125:48–77. https://doi.org/10.1016/j.addr.2017.12.004

    Article  CAS  PubMed  Google Scholar 

  34. Stewart ME et al (2008) Nanostructured plasmonic sensors. Chem Rev 108(2):494–521. https://doi.org/10.1021/cr068126n

    Article  CAS  PubMed  Google Scholar 

  35. Yang J, Giessen H, Lalanne P (2015) Simple analytical expression for the peak-frequency shifts of plasmonic resonances for sensing. Nano Lett 15(5):3439–3444. https://doi.org/10.1021/acs.nanolett.5b00771

    Article  CAS  PubMed  Google Scholar 

  36. Liyanage T, Masterson AN, Oyem HH, Kaimakliotis H, Nguyen H, Sardar R (2019) Plasmoelectronic-based ultrasensitive assay of tumor suppressor microRNAs directly in patient plasma: design of highly specific early cancer diagnostic technology. Anal Chem 91(3):1894–1903. https://doi.org/10.1021/acs.analchem.8b03768

    Article  CAS  PubMed  Google Scholar 

  37. Bathini S et al (2018) Nano-bio interactions of extracellular vesicles with gold nanoislands for early cancer diagnosis. Research 2018. https://doi.org/10.1155/2018/3917986

  38. Yavas O et al (2018) Self-calibrating on-chip localized surface plasmon resonance sensing for quantitative and multiplexed detection of cancer markers in human serum. ACS Sens 3(7):1376–1384. https://doi.org/10.1021/acssensors.8b00305

    Article  CAS  PubMed  Google Scholar 

  39. Ma C, Peng Y, Li H, Chen W (2021) Organ-on-a-chip: A new paradigm for drug development. Trends Pharmacol Sci 42(2):119–133. https://doi.org/10.1016/J.TIPS.2020.11.009

    Article  PubMed  Google Scholar 

  40. Clapp N, Amour A, Rowan WC, Candarlioglu PL (2021) Organ-on-chip applications in drug discovery: an end user perspective. Biochem Soc Trans 49(4):1881–1890. https://doi.org/10.1042/bst20210840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mohammed JS, Wang Y, Harvat TA, Oberholzer J, Eddington DT (2009) Microfluidic device for multimodal characterization of pancreatic islets. Lab Chip 9(1):97–106. https://doi.org/10.1039/B809590F

    Article  CAS  PubMed  Google Scholar 

  42. Perrier R et al (2018) Bioelectronic organ-based sensor for microfluidic real-time analysis of the demand in insulin. Biosens Bioelectron 117:253–259. https://doi.org/10.1016/j.bios.2018.06.015

    Article  CAS  PubMed  Google Scholar 

  43. Ortega MA et al (2021) In situ LSPR sensing of secreted insulin in organ-on-chip. Biosens 11(5):138. https://doi.org/10.3390/BIOS11050138

    Article  CAS  Google Scholar 

  44. Patel SN et al (2021) Organoid microphysiological system preserves pancreatic islet function within 3D matrix. Sci Adv 7(7). https://doi.org/10.1126/SCIADV.ABA5515

  45. Jun Y et al (2019) In vivo–mimicking microfluidic perfusion culture of pancreatic islet spheroids. Sci Adv 5(11). https://doi.org/10.1126/sciadv.aax4520

  46. Tao T et al (2014) Engineering human islet organoids from iPSCs using an organ-on-chip platform. Lab Chip 24(iii):1381–1388. https://doi.org/10.1039/C8LC01298A.Volume

    Article  Google Scholar 

  47. Zbinden A et al (2020) Non-invasive marker-independent high content analysis of a microphysiological human pancreas-on-a-chip model. Matrix Biol 85–86:205–220. https://doi.org/10.1016/j.matbio.2019.06.008

    Article  CAS  PubMed  Google Scholar 

  48. Velasco-Mallorquí F, Rodríguez-Comas J, Ramón-Azcón J (2021) Cellulose-based scaffolds enhance pseudoislets formation and functionality. Biofabrication 13(3):035044. https://doi.org/10.1088/1758-5090/ac00c3

    Article  CAS  Google Scholar 

  49. Edmonton protocol. Alberta Diabetes Institute. https://www.ualberta.ca/alberta-diabetes/about/edmonton-procotol.html. Accessed 30 Sep 2021

  50. Zhang D et al (2019) Myogenic differentiation of human amniotic mesenchymal cells and its tissue repair capacity on volumetric muscle loss. J Tissue Eng 10. https://doi.org/10.1177/2041731419887100

  51. Lopez-Muñoz GA, Fernández-Costa JM, Ortega MA, Balaguer-Trias J, Martín-Lasierra E, Ramon-Azcon J (2021) Plasmonic nanocrystals on polycarbonate substrates for direct and label-free biodetection of InterLeukin-6 in bioengineered 3D skeletal muscles. Nano 10(18):4477–4488

    Google Scholar 

  52. Ramón-Azcón J et al (2012) Gelatin methacrylate as a promising hydrogel for 3D microscale organization and proliferation of dielectrophoretically patterned cells. Lab Chip 12(16):2959–2969. https://doi.org/10.1039/c2lc40213k

    Article  CAS  PubMed  Google Scholar 

  53. Obregón R et al (2013) Non-invasive measurement of glucose uptake of skeletal muscle tissue models using a glucose nanobiosensor. Biosens Bioelectron 50:194–201. https://doi.org/10.1016/j.bios.2013.06.020

    Article  CAS  PubMed  Google Scholar 

  54. Fernández-Costa JM, Fernández-Garibay X, Velasco-Mallorquí F, Ramón-Azcón J (2021) Bioengineered in vitro skeletal muscles as new tools for muscular dystrophies preclinical studies. J Tissue Eng 12:10–12. https://doi.org/10.1177/2041731420981339

    Article  CAS  Google Scholar 

  55. Yeo M, Kim GH (2020) Micro/nano-hierarchical scaffold fabricated using a cell electrospinning/3D printing process for co-culturing myoblasts and HUVECs to induce myoblast alignment and differentiation. Acta Biomater 107:102–114. https://doi.org/10.1016/j.actbio.2020.02.042

    Article  CAS  PubMed  Google Scholar 

  56. Ebrahimi M, Ostrovidov S, Salehi S, Kim SB, Bae H, Khademhosseini A (2018) Enhanced skeletal muscle formation on microfluidic spun gelatin methacryloyl (GelMA) fibres using surface patterning and agrin treatment. J Tissue Eng Regen Med 12(11):2151–2163. https://doi.org/10.1002/term.2738

    Article  CAS  PubMed  Google Scholar 

  57. Mozetic P, Giannitelli SM, Gori M, Trombetta M, Rainer A (2017) Engineering muscle cell alignment through 3D bioprinting. J Biomed Mater Res Part A 105(9):2582–2588. https://doi.org/10.1002/jbm.a.36117

    Article  CAS  Google Scholar 

  58. Wan L, Flegle J, Ozdoganlar B, Leduc PR (2020) Toward vasculature in skeletal muscle-on-a-chip through thermo-responsive sacrificial templates. Micromachines 11(10):1–13. https://doi.org/10.3390/mi11100907

    Article  Google Scholar 

  59. Fernández-Garibay X et al (2021) Bioengineered in vitro 3D model of myotonic dystrophy type 1 human skeletal muscle. Biofabrication 13(3):035035. https://doi.org/10.1088/1758-5090/abf6ae

    Article  CAS  Google Scholar 

  60. Kim JY, Kim WJ, Kim GH (2020) Scaffold with micro/nanoscale topographical cues fabricated using E-field-assisted 3D printing combined with plasma-etching for enhancing myoblast alignment and differentiation. Appl Surf Sci 509:145404. https://doi.org/10.1016/j.apsusc.2020.145404

    Article  CAS  Google Scholar 

  61. Kang YBA et al (2015) Liver sinusoid on a chip: Long-term layered co-culture of primary rat hepatocytes and endothelial cells in microfluidic platforms. Biotechnol Bioeng 112(12):2571–2582. https://doi.org/10.1002/bit.25659

    Article  CAS  PubMed  Google Scholar 

  62. De Chiara F, Ferret-Miñana A, Ramón-Azcón J (2021) The synergy between organ-on-a-chip and artificial intelligence for the study of NAFLD: from basic science to clinical research. Biomedicine 9(3):1–16. https://doi.org/10.3390/biomedicines9030248

    Article  CAS  Google Scholar 

  63. Foster AJ et al (2019) Integrated in vitro models for hepatic safety and metabolism: evaluation of a human Liver-Chip and liver spheroid. Arch Toxicol 93(4):1021–1037. https://doi.org/10.1007/s00204-019-02427-4

    Article  CAS  PubMed  Google Scholar 

  64. Choe A, Ha SK, Choi I, Choi N, Sung JH (2017) Microfluidic Gut-liver chip for reproducing the first pass metabolism. Biomed Microdevices 19(1):1–11. https://doi.org/10.1007/s10544-016-0143-2

    Article  CAS  Google Scholar 

  65. Huh D (2015) A human breathing lung-on-a-chip. Ann Am Thorac Soc 12(3):S42–S44. https://doi.org/10.1513/AnnalsATS.201410-442MG

    Article  PubMed  Google Scholar 

  66. Zamprogno P et al (2021) Second-generation lung-on-a-chip with an array of stretchable alveoli made with a biological membrane. Commun Biol 4(1):1–10. https://doi.org/10.1038/s42003-021-01695-0

    Article  CAS  Google Scholar 

  67. Kitsara M, Kontziampasis D, Agbulut O, Chen Y (2019) Heart on a chip: micro-nanofabrication and microfluidics steering the future of cardiac tissue engineering. Microelectron Eng 203–204:44–62. https://doi.org/10.1016/j.mee.2018.11.001

    Article  CAS  Google Scholar 

  68. Xiang Y, Wen H, Yu Y, Li M, Fu X, Huang S (2020) Gut-on-chip: recreating human intestine in vitro. J. Tissue Eng. 11. https://doi.org/10.1177/2041731420965318

  69. de Haan P, Santbergen MJC, van der Zande M, Bouwmeester H, Nielen MWF, Verpoorte E (2021) A versatile, compartmentalised gut-on-a-chip system for pharmacological and toxicological analyses. Sci Rep 11(1):1–13. https://doi.org/10.1038/s41598-021-84187-9

    Article  CAS  Google Scholar 

  70. Yin L et al (2020) Efficient drug screening and nephrotoxicity assessment on co-culture microfluidic kidney chip. Sci Rep 10(1):1–11. https://doi.org/10.1038/s41598-020-63096-3

    Article  CAS  Google Scholar 

  71. Raimondi I, Izzo L, Tunesi M, Comar M, Albani D, Giordano C (2020) Organ-on-a-chip in vitro models of the brain and the blood-brain barrier and their value to study the microbiota-gut-brain axis in neurodegeneration. Front Bioeng Biotechnol 7. https://doi.org/10.3389/fbioe.2019.00435

  72. Liu X et al (2021) Tumor-on-a-chip: from bioinspired design to biomedical application. Microsyst Nanoeng 7(1). https://doi.org/10.1038/s41378-021-00277-8

  73. Swaminathan S, Hamid Q, Sun W, Clyne AM (2020) Bioprinting of 3D breast epithelial spheroids for human cancer models. 11(2). https://doi.org/10.1088/1758-5090/aafc49.Bioprinting

  74. Shan S, Johnston AP (2017) The production of 3D tumor spheroids for cancer drug discovery. Physiol Behav 176(12):139–148. https://doi.org/10.1016/j.ddtec.2017.03.002.The

    Article  Google Scholar 

  75. Carvalho MR et al (2019) Colorectal tumor-on-a-chip system: A 3D tool for precision onco-nanomedicine. Sci Adv 5(5):1–12. https://doi.org/10.1126/sciadv.aaw1317

    Article  CAS  Google Scholar 

  76. Cohen A et al (2021) Mechanism and reversal of drug-induced nephrotoxicity on a chip. Sci Transl Med 13(582). https://doi.org/10.1126/SCITRANSLMED.ABD6299

  77. Vernetti LA et al (2015) Original research. A human liver microphysiology platform for investigating physiology, drug safety, and disease models. Exp Biol Med 241:101–114. https://doi.org/10.1177/1535370215592121

    Article  CAS  Google Scholar 

  78. Moradi E, Jalili-Firoozinezhad S, Solati-Hashjin M (2020) Microfluidic organ-on-a-chip models of human liver tissue. Acta Biomater 116:67–83. https://doi.org/10.1016/j.actbio.2020.08.041

    Article  CAS  PubMed  Google Scholar 

  79. Bavli D et al (2016) Real-time monitoring of metabolic function in liver-onchip microdevices tracks the dynamics of Mitochondrial dysfunction. Proc Natl Acad Sci U S A 113(16):E2231–E2240. https://doi.org/10.1073/pnas.1522556113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. da Ponte RM et al (2021) Monolithic integration of a smart temperature sensor on a modular silicon-based organ-on-a-chip device. Sensors Actuators A Phys 317:112439. https://doi.org/10.1016/j.sna.2020.112439

    Article  CAS  Google Scholar 

  81. Wang C, Otto S, Dorn M, Heinze K, Resch-Genger U (2019) Luminescent TOP nanosensors for simultaneously measuring temperature, oxygen, and pH at a single excitation wavelength. Anal Chem 91(3):2337–2344. https://doi.org/10.1021/acs.analchem.8b05060

    Article  CAS  PubMed  Google Scholar 

  82. Chu C-S, Syu J-J (2017) Optical sensor for dual sensing of oxygen and carbon dioxide based on sensing films coated on filter paper. Appl Opt 56(4):1225. https://doi.org/10.1364/ao.56.001225

    Article  CAS  PubMed  Google Scholar 

  83. Weltin A et al (2014) Cell culture monitoring for drug screening and cancer research: a transparent, microfluidic, multi-sensor microsystem. Lab Chip 14(1):138–146. https://doi.org/10.1039/c3lc50759a

    Article  CAS  PubMed  Google Scholar 

  84. Wu CC, Luk HN, Lin YTT, Yuan CY (2010) A Clark-type oxygen chip for in situ estimation of the respiratory activity of adhering cells. Talanta 81(1–2):228–234. https://doi.org/10.1016/j.talanta.2009.11.062

    Article  CAS  PubMed  Google Scholar 

  85. Oomen PE, Skolimowski MD, Verpoorte E (2016) Implementing oxygen control in chip-based cell and tissue culture systems. Lab Chip 16(18):3394–3414. https://doi.org/10.1039/c6lc00772d

    Article  CAS  PubMed  Google Scholar 

  86. Rennert K et al (2015) A microfluidically perfused three dimensional human liver model. Biomaterials 71:119–131. https://doi.org/10.1016/j.biomaterials.2015.08.043

    Article  CAS  PubMed  Google Scholar 

  87. Zirath H et al (2018) Every breath you take: non-invasive real-time oxygen biosensing in two- and three-dimensional microfluidic cell models. Front Physiol 9(JUL):1–12. https://doi.org/10.3389/fphys.2018.00815

    Article  Google Scholar 

  88. Lin Y, Yu P, Hao J, Wang Y, Ohsaka T, Mao L (2014) Continuous and simultaneous electrochemical measurements of glucose, lactate, and ascorbate in rat brain following brain ischemia. Anal Chem 86(8):3895–3901. https://doi.org/10.1021/ac4042087

    Article  CAS  PubMed  Google Scholar 

  89. Moutaux E, Charlot B, Genoux A, Saudou F, Cazorla M (2018) An integrated microfluidic/microelectrode array for the study of activity-dependent intracellular dynamics in neuronal networks. Lab Chip 18(22):3425–3435. https://doi.org/10.1039/C8LC00694F

    Article  CAS  PubMed  Google Scholar 

  90. Ortega MA et al (2019) Muscle-on-a-chip with an on-site multiplexed biosensing system for: in situ monitoring of secreted IL-6 and TNF-α. Lab Chip 19(15):2568–2580. https://doi.org/10.1039/c9lc00285e

    Article  CAS  PubMed  Google Scholar 

  91. Zhu Y et al (2021) State of the art in integrated biosensors for organ-on-a-chip applications. Curr Opin Biomed Eng 19:100309. https://doi.org/10.1016/j.cobme.2021.100309

    Article  Google Scholar 

  92. Zhang YS et al (2017) Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc Natl Acad Sci 114(12):E2293–E2302. https://doi.org/10.1073/PNAS.1612906114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shin SR et al (2016) Aptamer-based microfluidic electrochemical biosensor for monitoring cell-secreted trace cardiac biomarkers. Anal Chem 88(20):10019–10027. https://doi.org/10.1021/ACS.ANALCHEM.6B02028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This project received financial support from the European Research Council program under grants ERC-StG-DAMOC (714317), the European Commission under FET-open program BLOC project (GA-863037), the Spanish Ministry of Economy and Competitiveness, through the “Severo Ochoa” Program for Centres of Excellence in R & D (SEV-2016–2019) and “Retos de investigación: Proyectos I+D+i” (TEC2017-83716-C2-2-R), the CERCA Programme/Generalitat de Catalunya (2017-SGR-1079) and Fundación Bancaria “la Caixa”- Obra Social “la Caixa” (project IBEC-La Caixa Healthy Ageing) to Javier Ramón-Azcón. Gerardo A. Lopez-Muñoz acknowledges SECTEI (Secretaria de Educación, Ciencia, Tecnología e Innovación de la Ciudad de México) for Postdoctoral Fellowship SECTEI/143/2019 and CM-SECTEI/013/2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Ramón-Azcón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lopez-Muñoz, G.A., Mughal, S., Ramón-Azcón, J. (2022). Sensors and Biosensors in Organs-on-a-Chip Platforms. In: Caballero, D., Kundu, S.C., Reis, R.L. (eds) Microfluidics and Biosensors in Cancer Research. Advances in Experimental Medicine and Biology, vol 1379. Springer, Cham. https://doi.org/10.1007/978-3-031-04039-9_3

Download citation

Publish with us

Policies and ethics