Skip to main content
Log in

Evanescent wave biosensors

Real-time analysis of biomolecular interactions

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Optical biosensors, based on evanescent wave technology, are analytical devices that measure the interactions between biomolecules in real time, without the need for any labels. Specific ligands are immobilized to a sensor surface, and a solution of receptor or antibody is injected over the top. Binding is measured by recording changes in the refractive index, caused by the molecules interacting near the sensor surface within the evanescent field. Evanescent wave-based biosensors are being used to study an increasing number of applications in the life sciences, including the binding and dissociation kinetics of antibodies and receptor-ligand pairs, protein-DNA and DNA-DNA interactions, epitope mapping, phage display libraries, and whole cell- and virus-protein interactions. There are currently four commercially available avanescent wave biosensors on the market. This article describes the technology behind their sensing techniques, as well as the range of applications in which they are employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scheller, F., Schubert, F., Pfeiffer, D., Hintsche, R., Dransfeld, I., Renneberg, R., Wollenberger, U., Riedel, K., Pavlova, M., Kuhn, M., and Muller, H.-G. (1989) Research and development of biosensors. A review.Analyst 114(6), 653–62.

    Article  PubMed  CAS  Google Scholar 

  2. Thompson, M. and Krull, U. J. (1991) Biosensors and the transduction of molecular recognition.Anal. Chem. 63(7), 393A-405A.

    Article  PubMed  CAS  Google Scholar 

  3. Schultz, J. S. (1991) Biosensors.Sci. Am. 265(2), 64–69.

    Article  PubMed  CAS  Google Scholar 

  4. Roe, J. N. (1992) Biosensor development.Pharm. Res. 9(7), 835–844.

    Article  PubMed  CAS  Google Scholar 

  5. Vadgama, P. and Crump, P. W. (1992) Biosensors: Recent trends.Analyst 117, 1657–1670.

    Article  CAS  Google Scholar 

  6. Liedberg, B., Nylander, C., and Lundstrom, I. (1983) Surface plasmon resonance for gas-detection and biosensing.Sensor Actuators 4, 299–304.

    Article  CAS  Google Scholar 

  7. Fägerstam, L. G. (1991) A non-label technology for real-time biospecific interaction analysis.Techniques in Protein Chemistry II (Villafranca, J., ed.), Academic, New York, pp. 65–71.

    Google Scholar 

  8. Jönsson, U., Fägerstam, L., Ivarsson, B., Johnsson, B., Karlsson, R., Lundh, K., Löfås, S., Persson, B., Roos, H., Rönnberg I., Sjölander, S., Stenberg, E., Ståhlberg, R., Urbaniczky, C., Östlin, H., and Malmqvist, M. (1991) Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology.BioTechniques 11(5), 620–627.

    PubMed  Google Scholar 

  9. Stenberg, E., Persson, B., Roos, H., and Urbaniczky, C. (1991) Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins.J. Colloid Interface Sci. 143, 513–526.

    Article  CAS  Google Scholar 

  10. Cush, R., Cronin, J. M., Stewart, W. J., Maule, C. H., Molloy, J., and Goddard, N. J. (1993) The resonant mirror: A novel optical biosensor for direct sensing of biomolecular interactions. Part I: Principle of operation and associated instrumentation.Biosensors Bioelectronics 8, 347–353.

    Article  CAS  Google Scholar 

  11. Lukosz, W., Clerc, D., Nellen, P. M., Stamm, C., and Weiss, P. (1991) Output grating couplers on planar optical waveguides as direct immunosensors.Biosensors Bioelectronics 6(3), 227–232.

    Article  PubMed  CAS  Google Scholar 

  12. Karlsson, R., Michaelsson, A., and Mattsson, L. (1991) Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system.J. Immunol. Methods 145, 229–240.

    Article  PubMed  CAS  Google Scholar 

  13. Fägerstam, L. G., Frostell, A., Karlsson, R., Kullman, M., Larsson, A., Malmqvist, M., and Butt, H. (1990) Detection of antigen-antibody interactions by surface plasmon resonance. Application to epitope mapping.J. Mol. Recognition 3(5/6), 208–214.

    Article  Google Scholar 

  14. Johne, B., Gadnell, M., and Hansen, K. (1993) Epitope mapping and binding kinetics of monoclonal antibodies using real time biospecific interaction using surface plasmon resonance.J. Immunol. Methods 160(2), 191–198.

    Article  PubMed  CAS  Google Scholar 

  15. Söderlind, E., Simonsson, A. C., and Borrebaeck, C. A. K. (1992) Phage display technology in antibody engineering: Design of phagemid vectors andin vitro maturation systems.Immunol. Rev. 130, 503–507.

    Article  Google Scholar 

  16. Holliger, P., Prospero, T., and Winter, G. (1993) “Diabodies”: Small bivalent and bispecific antibody fragments.Proc. Natl. Acad. Sci. 90, 6444–6448.

    Article  PubMed  CAS  Google Scholar 

  17. Cunningham, B. C. and Wells, J. A. (1993) Comparison of a structural and functional epitope.J. Mol. Biol. 234, 554–563.

    Article  PubMed  CAS  Google Scholar 

  18. Brigham-Burke, M. and O'Shannessy, D. J. (1993) A micro-scale method employing surface plasmon resonance for the determination of conditions for immunoaffinity chromatography of proteins.Chromatographia 35(1/2), 45–49.

    Article  CAS  Google Scholar 

  19. O'Brien, D. P., Kemball-Cook, G., Hutchinson, A. M., Martin, D. M., Johnson, D. J., Takamiya, O., Tuddenham, E. G. D., and McVey, J. H. (1994) Surface plasmon resonance studies of the interaction between factor VII and tissue factor. Demonstration of defective tissue factor binding in a variant FVII molecule (FVII-R79Q).Biochemistry 33, 14,162–14,169.

    Article  Google Scholar 

  20. End, P., Gout, I., Fry, M. J., Panayotou, G., Dhand, R., Yonezawa, K., Kasuga, M., and Waterfield, M. D. (1993) A biosensor approach to probe the structure and function of the p85α subunit of the phosphatidylinositol 3-kinase complex.J. Biol. Chem. 268(14), 10,066–10,075.

    CAS  Google Scholar 

  21. Felder, S., Zhou, M., Hu, P., Urena, J., Ullrich, A., Chaudhuri, M., White, M., Shoelson, S. E., and Schlessinger, J. (1993) SH2 domains exhibit high affinity binding to tyrosine-phosphorylated peptides yet also exhibit rapid dissociation and exchange.Mol. Cell. Biol. 13(3), 1449–1455.

    PubMed  CAS  Google Scholar 

  22. Schuster, J. S., Swanson, R. V., Alex, L. A., Bourret, R. B., and Simon, M. I. (1993) Assembly and function of a quaternary signal transduction complex monitored by surface plasmon resonance.Nature 365, 343–346.

    Article  PubMed  CAS  Google Scholar 

  23. van der Merwe, P. A., Brown, M., Davis, S. J., and Barclay, A. N. (1993) Affinity and kinetic analysis of the interaction of the cell adhesion molecules rat CD2 and CD48.EMBO J. 12(13), 4945–4954.

    PubMed  Google Scholar 

  24. Wood, S. J. (1993) DNA-DNA hybridization in real time using BIAcore.Microchem. J. 47, 330–337.

    Article  CAS  Google Scholar 

  25. Fisher, R. J., Fivash, M., Casas-Finet, J., Erickson, J. W., Kondoh, A., Bladen, S. V., Fisher, C., Watson, D. K., and Papas, T. (1994) Real time DNA binding measurements of the ETS1 recombinant oncoproteins reveal significant kinetic differences between the p42 and p51 isoforms.Protein Sci. 3, 257–266.

    Article  PubMed  CAS  Google Scholar 

  26. Hutchinson, A. M. (1994) Characterisation of glycoprotein oligosaccharides using surface plasmon resonance.Anal. Biochem. 220, 303–307.

    Article  PubMed  CAS  Google Scholar 

  27. Shinohara, Y., Kim, F., Shimizu, M., Goto, M., Tosu, M., and Hasegawa, Y. (1994) Kinetic measurement of the interaction between an oligosaccharide and lectins by a biosensor based on surface plasmon resonance.Eur. J. Biochem. 223, 189–194.

    Article  PubMed  CAS  Google Scholar 

  28. Dubs, M-C., Altschuh, D., and van Regenmortel, M. (1991) Interaction between viruses and monoclonal antibodies studied by surface plasmon resonance.Immunol. Lett. 31, 59–64.

    Article  Google Scholar 

  29. Brigham-Burke, M., Edwards, J. R., and O'Shannessy, D. J. (1992) Detection of receptor-ligand interactions using surface plasmon resonance: Model studies employing the HIV-1 gp120/CD4 interaction.Anal. Biochem. 205(1), 125–131.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutchinson, A.M. Evanescent wave biosensors. Mol Biotechnol 3, 47–54 (1995). https://doi.org/10.1007/BF02821334

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02821334

Index Entries

Navigation