Skip to main content

Artificial Intelligence for Precision Oncology

  • Chapter
  • First Online:
Computational Methods for Precision Oncology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1361))

Abstract

Precision oncology is an innovative approach to cancer care in which diagnosis, prognosis, and treatment are informed by the individual patient’s genetic and molecular profile. The rapid development of novel high-throughput omics technologies in recent years has led to the generation of massive amount of complex patient data, which in turn has prompted the development of novel computational infrastructures, platforms, and tools to store, retrieve, and analyze this data efficiently. Artificial intelligence (AI), and in particular its subfield of machine learning, is ideal for deciphering patterns in large datasets and offers unique opportunities for advancing precision oncology. In this chapter, we provide an overview of the various public data resources and applications of AI in precision oncology and cancer research, from subtype identification to drug prioritization, using multi-omics datasets. We also discuss the impact of AI-powered medical image analysis in oncology and present the first diagnostic FDA-approved AI-powered tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Doroshow DB, Doroshow JH. From the broad phase II trial to precision oncology: a perspective on the origins of basket and umbrella clinical trial designs in cancer drug development. Cancer J. 2019;25(4):245–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Deininger MW, Druker BJ. Specific targeted therapy of chronic myelogenous leukemia with imatinib. Pharmacol Rev. 2003;55(3):401–23.

    Article  CAS  PubMed  Google Scholar 

  3. Slatko BE, Gardner AF, Ausubel FM. Overview of next-generation sequencing technologies. Curr Protoc Mol Biol. 2018;122(1):e59.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Li X, Wang W, Chen J. Recent progress in mass spectrometry proteomics for biomedical research. Sci China Life Sci. 2017;60(10):1093–113.

    Article  CAS  PubMed  Google Scholar 

  5. Werner RJ, Kelly AD, Issa JJ. Epigenetics and precision oncology. Cancer J. 2017;23(5):262–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jensen MA, Ferretti V, Grossman RL, Staudt LM. The NCI genomic data commons as an engine for precision medicine. Blood. 2017;130(4):453–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Grossman RL, Heath A, Murphy M, Patterson M, Wells W. A case for data commons: toward data science as a service. Comput Sci Eng. 2016;18(5):10–20.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Prior FW, Clark K, Commean P, Freymann J, Jaffe C, Kirby J, Moore S, Smith K, Tarbox L, Vendt B, Marquez G. TCIA: An information resource to enable open science. Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:1282–5.

    PubMed  Google Scholar 

  9. Chen F, Zhang Y, Creighton CJ. Systematic identification of non-coding somatic single nucleotide variants associated with altered transcription and DNA methylation in adult and pediatric cancers. NAR Cancer. 2021;3(1):zcab001.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rudnick PA, Markey SP, Roth J, Mirokhin Y, Yan X, Tchekhovskoi DV, Edwards NJ, Thangudu RR, Ketchum KA, Kinsinger CR, Mesri M, Rodriguez H, Stein SE. A description of the clinical proteomic tumor analysis consortium (CPTAC) common data analysis pipeline. J Proteome Res. 2016;15(3):1023–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jang IS, Neto EC, Guinney J, Friend SH, Margolin AA. Systematic assessment of analytical methods for drug sensitivity prediction from cancer cell line data. Pac Symp Biocomput. 2014:63–74.

    Google Scholar 

  12. Shoemaker RH. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer. 2006;6(10):813–23.

    Article  CAS  PubMed  Google Scholar 

  13. Ghandi M, Huang FW, Jane-Valbuena J, Kryukov GV, Lo CC, McDonald ER 3rd, Barretina J, Gelfand ET, Bielski CM, Li H, Hu K, Andreev-Drakhlin AY, Kim J, Hess JM, Haas BJ, Aguet F, Weir BA, Rothberg MV, Paolella BR, Lawrence MS, Akbani R, Lu Y, Tiv HL, Gokhale PC, de Weck A, Mansour AA, Oh C, Shih J, Hadi K, Rosen Y, Bistline J, Venkatesan K, Reddy A, Sonkin D, Liu M, Lehar J, Korn JM, Porter DA, Jones MD, Golji J, Caponigro G, Taylor JE, Dunning CM, Creech AL, Warren AC, McFarland JM, Zamanighomi M, Kauffmann A, Stransky N, Imielinski M, Maruvka YE, Cherniack AD, Tsherniak A, Vazquez F, Jaffe JD, Lane AA, Weinstock DM, Johannessen CM, Morrissey MP, Stegmeier F, Schlegel R, Hahn WC, Getz G, Mills GB, Boehm JS, Golub TR, Garraway LA, Sellers WR. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature. 2019;569(7757):503–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, Bindal N, Beare D, Smith JA, Thompson IR, Ramaswamy S, Futreal PA, Haber DA, Stratton MR, Benes C, McDermott U, Garnett MJ. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2013;41(Database issue):D955–61.

    CAS  PubMed  Google Scholar 

  15. Holbeck SL, Camalier R, Crowell JA, Govindharajulu JP, Hollingshead M, Anderson LW, Polley E, Rubinstein L, Srivastava A, Wilsker D, Collins JM, Doroshow JH. The National Cancer Institute ALMANAC: a comprehensive screening resource for the detection of anticancer drug pairs with enhanced therapeutic activity. Cancer Res. 2017;77(13):3564–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian A, Ross KN, Reich M, Hieronymus H, Wei G, Armstrong SA, Haggarty SJ, Clemons PA, Wei R, Carr SA, Lander ES, Golub TR. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313(5795):1929–35.

    Article  CAS  PubMed  Google Scholar 

  17. Vidovic D, Koleti A, Schurer SC. Large-scale integration of small molecule-induced genome-wide transcriptional responses, Kinome-wide binding affinities and cell-growth inhibition profiles reveal global trends characterizing systems-level drug action. Front Genet. 2014;5:342.

    PubMed  PubMed Central  Google Scholar 

  18. Meyers RM, Bryan JG, McFarland JM, Weir BA, Sizemore AE, Xu H, Dharia NV, Montgomery PG, Cowley GS, Pantel S, Goodale A, Lee Y, Ali LD, Jiang G, Lubonja R, Harrington WF, Strickland M, Wu T, Hawes DC, Zhivich VA, Wyatt MR, Kalani Z, Chang JJ, Okamoto M, Stegmaier K, Golub TR, Boehm JS, Vazquez F, Root DE, Hahn WC, Tsherniak A. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat Genet. 2017;49(12):1779–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bhalla S, Melnekoff DTM, Keats J, Onel K, Madduri D, Richter J, Richard S, Chari A, Cho HJ, Dudley JT, Jagannath S, Laganà A, Parekh S. Patient similarity network of multiple myeloma identifies patient sub-groups with distinct genetic and clinical features. bioRxiv. 2020; https://doi.org/10.1101/2020.06.02.129767.

  20. Cavalli FMG, Remke M, Rampasek L, Peacock J, Shih DJH, Luu B, Garzia L, Torchia J, Nor C, Morrissy AS, Agnihotri S, Thompson YY, Kuzan-Fischer CM, Farooq H, Isaev K, Daniels C, Cho BK, Kim SK, Wang KC, Lee JY, Grajkowska WA, Perek-Polnik M, Vasiljevic A, Faure-Conter C, Jouvet A, Giannini C, Nageswara Rao AA, Li KKW, Ng HK, Eberhart CG, Pollack IF, Hamilton RL, Gillespie GY, Olson JM, Leary S, Weiss WA, Lach B, Chambless LB, Thompson RC, Cooper MK, Vibhakar R, Hauser P, van Veelen MC, Kros JM, French PJ, Ra YS, Kumabe T, Lopez-Aguilar E, Zitterbart K, Sterba J, Finocchiaro G, Massimino M, Van Meir EG, Osuka S, Shofuda T, Klekner A, Zollo M, Leonard JR, Rubin JB, Jabado N, Albrecht S, Mora J, Van Meter TE, Jung S, Moore AS, Hallahan AR, Chan JA, Tirapelli DPC, Carlotti CG, Fouladi M, Pimentel J, Faria CC, Saad AG, Massimi L, Liau LM, Wheeler H, Nakamura H, Elbabaa SK, Perezpena-Diazconti M, Chico Ponce de Leon F, Robinson S, Zapotocky M, Lassaletta A, Huang A, Hawkins CE, Tabori U, Bouffet E, Bartels U, Dirks PB, Rutka JT, Bader GD, Reimand J, Goldenberg A, Ramaswamy V, Taylor MD. Intertumoral heterogeneity within Medulloblastoma subgroups. Cancer Cell. 2017;31(6):737–754 e736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang B, Mezlini AM, Demir F, Fiume M, Tu Z, Brudno M, Haibe-Kains B, Goldenberg A. Similarity network fusion for aggregating data types on a genomic scale. Nat Methods. 2014;11(3):333–7.

    Article  CAS  PubMed  Google Scholar 

  22. Upadhyaya SA, Robinson GW, Onar-Thomas A, Orr BA, Johann P, Wu G, Billups CA, Tatevossian RG, Dhanda SK, Srinivasan A, Broniscer A, Qaddoumi I, Vinitsky A, Armstrong GT, Bendel AE, Hassall T, Partap S, Fisher PG, Crawford JR, Chintagumpala M, Bouffet E, Gururangan S, Mostafavi R, Sanders RP, Klimo P Jr, Patay Z, Indelicato DJ, Nichols KE, Boop FA, Merchant TE, Kool M, Ellison DW, Gajjar A. Relevance of molecular groups in children with newly diagnosed atypical teratoid rhabdoid tumor: results from prospective St. Jude multi-institutional trials. Clin Cancer Res. 2021;27(10):2879–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.

    Article  CAS  Google Scholar 

  24. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, Graf S, Ha G, Haffari G, Bashashati A, Russell R, McKinney S, METABRIC Group, Langerod A, Green A, Provenzano E, Wishart G, Pinder S, Watson P, Markowetz F, Murphy L, Ellis I, Purushotham A, Borresen-Dale AL, Brenton JD, Tavare S, Caldas C, Aparicio S. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486(7403):346–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hoadley KA, Yau C, Wolf DM, Cherniack AD, Tamborero D, Ng S, Leiserson MDM, Niu B, McLellan MD, Uzunangelov V, Zhang J, Kandoth C, Akbani R, Shen H, Omberg L, Chu A, Margolin AA, Van’t Veer LJ, Lopez-Bigas N, Laird PW, Raphael BJ, Ding L, Robertson AG, Byers LA, Mills GB, Weinstein JN, Van Waes C, Chen Z, Collisson EA, Cancer Genome Atlas Research Network, Benz CC, Perou CM, Stuart JM. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell. 2014;158(4):929–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lu CF, Hsu FT, Hsieh KL, Kao YJ, Cheng SJ, Hsu JB, Tsai PH, Chen RJ, Huang CC, Yen Y, Chen CY. Machine learning-based radiomics for molecular subtyping of gliomas. Clin Cancer Res. 2018;24(18):4429–36.

    Article  PubMed  Google Scholar 

  27. Mallavarapu T, Hao J, Kim Y, Oh JH, Kang M. Pathway-based deep clustering for molecular subtyping of cancer. Methods. 2020;173:24–31.

    Article  CAS  PubMed  Google Scholar 

  28. Fang C, Xu D, Su J, Dry JR, Linghu B. DeePaN: deep patient graph convolutional network integrating clinico-genomic evidence to stratify lung cancers for immunotherapy. NPJ Digit Med. 2021;4(1):14.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, Lu S, Kemberling H, Wilt C, Luber BS, Wong F, Azad NS, Rucki AA, Laheru D, Donehower R, Zaheer A, Fisher GA, Crocenzi TS, Lee JJ, Greten TF, Duffy AG, Ciombor KK, Eyring AD, Lam BH, Joe A, Kang SP, Holdhoff M, Danilova L, Cope L, Meyer C, Zhou S, Goldberg RM, Armstrong DK, Bever KM, Fader AN, Taube J, Housseau F, Spetzler D, Xiao N, Pardoll DM, Papadopoulos N, Kinzler KW, Eshleman JR, Vogelstein B, Anders RA, Diaz LA Jr. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357(6349):409–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN, Demetri GD, Nathenson M, Doebele RC, Farago AF, Pappo AS, Turpin B, Dowlati A, Brose MS, Mascarenhas L, Federman N, Berlin J, El-Deiry WS, Baik C, Deeken J, Boni V, Nagasubramanian R, Taylor M, Rudzinski ER, Meric-Bernstam F, Sohal DPS, Ma PC, Raez LE, Hechtman JF, Benayed R, Ladanyi M, Tuch BB, Ebata K, Cruickshank S, Ku NC, Cox MC, Hawkins DS, Hong DS, Hyman DM. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med. 2018;378(8):731–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gupta S, Chaudhary K, Kumar R, Gautam A, Nanda JS, Dhanda SK, Brahmachari SK, Raghava GP. Prioritization of anticancer drugs against a cancer using genomic features of cancer cells: a step towards personalized medicine. Sci Rep. 2016;6:23857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dong Z, Zhang N, Li C, Wang H, Fang Y, Wang J, Zheng X. Anticancer drug sensitivity prediction in cell lines from baseline gene expression through recursive feature selection. BMC Cancer. 2015;15:489.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Zhang F, Wang M, Xi J, Yang J, Li A. A novel heterogeneous network-based method for drug response prediction in cancer cell lines. Sci Rep. 2018;8(1):3355.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Lee SI, Celik S, Logsdon BA, Lundberg SM, Martins TJ, Oehler VG, Estey EH, Miller CP, Chien S, Dai J, Saxena A, Blau CA, Becker PS. A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia. Nat Commun. 2018;9(1):42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Di J, Zheng B, Kong Q, Jiang Y, Liu S, Yang Y, Han X, Sheng Y, Zhang Y, Cheng L, Han J. Prioritization of candidate cancer drugs based on a drug functional similarity network constructed by integrating pathway activities and drug activities. Mol Oncol. 2019;13(10):2259–77.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yan X, Yang Y, Chen Z, Yin Z, Deng Z, Qiu T, Tang K, Cao Z. H-RACS: a handy tool to rank anti-cancer synergistic drugs. Aging (Albany NY). 2020;12(21):21504–17.

    Article  CAS  Google Scholar 

  37. Chang Y, Park H, Yang HJ, Lee S, Lee KY, Kim TS, Jung J, Shin JM. Cancer drug response profile scan (CDRscan): a deep learning model that predicts drug effectiveness from cancer genomic signature. Sci Rep. 2018;8(1):8857.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Rampasek L, Hidru D, Smirnov P, Haibe-Kains B, Goldenberg A. Dr.VAE: improving drug response prediction via modeling of drug perturbation effects. Bioinformatics. 2019;35(19):3743–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Preuer K, Lewis RPI, Hochreiter S, Bender A, Bulusu KC, Klambauer G. DeepSynergy: predicting anti-cancer drug synergy with deep learning. Bioinformatics. 2018;34(9):1538–46.

    Article  CAS  PubMed  Google Scholar 

  40. Xia F, Shukla M, Brettin T, Garcia-Cardona C, Cohn J, Allen JE, Maslov S, Holbeck SL, Doroshow JH, Evrard YA, Stahlberg EA, Stevens RL. Predicting tumor cell line response to drug pairs with deep learning. BMC Bioinform. 2018;19(Suppl 18):486.

    Article  CAS  Google Scholar 

  41. Chen G, Tsoi A, Xu H, Zheng WJ. Predict effective drug combination by deep belief network and ontology fingerprints. J Biomed Inform. 2018;85:149–54.

    Article  PubMed  Google Scholar 

  42. Li M, Wang Y, Zheng R, Shi X, Li Y, Wu FX, Wang J. DeepDSC: a deep learning method to predict drug sensitivity of cancer cell lines. IEEE/ACM Trans Comput Biol Bioinform. 2021;18(2):575–82.

    Article  CAS  PubMed  Google Scholar 

  43. Ding MQ, Chen L, Cooper GF, Young JD, Lu X. Precision oncology beyond targeted therapy: combining omics data with machine learning matches the majority of cancer cells to effective therapeutics. Mol Cancer Res. 2018;16(2):269–78.

    Article  CAS  PubMed  Google Scholar 

  44. Ammad-Ud-Din M, Khan SA, Malani D, Murumagi A, Kallioniemi O, Aittokallio T, Kaski S. Drug response prediction by inferring pathway-response associations with kernelized Bayesian matrix factorization. Bioinformatics. 2016;32(17):i455–63.

    Article  CAS  PubMed  Google Scholar 

  45. Sun W, Sanderson PE, Zheng W. Drug combination therapy increases successful drug repositioning. Drug Discov Today. 2016;21(7):1189–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hecht JR, Mitchell E, Chidiac T, Scroggin C, Hagenstad C, Spigel D, Marshall J, Cohn A, McCollum D, Stella P, Deeter R, Shahin S, Amado RG. A randomized phase IIIB trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J Clin Oncol. 2009;27(5):672–80.

    Article  CAS  PubMed  Google Scholar 

  47. Tol J, Koopman M, Cats A, Rodenburg CJ, Creemers GJ, Schrama JG, Erdkamp FL, Vos AH, van Groeningen CJ, Sinnige HA, Richel DJ, Voest EE, Dijkstra JR, Vink-Borger ME, Antonini NF, Mol L, van Krieken JH, Dalesio O, Punt CJ. Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med. 2009;360(6):563–72.

    Article  CAS  PubMed  Google Scholar 

  48. Lee JS, Nair NU, Dinstag G, Chapman L, Chung Y, Wang K, Sinha S, Cha H, Kim D, Schperberg AV, Srinivasan A, Lazar V, Rubin E, Hwang S, Berger R, Beker T, Ronai Z, Hannenhalli S, Gilbert MR, Kurzrock R, Lee SH, Aldape K, Ruppin E. Synthetic lethality-mediated precision oncology via the tumor transcriptome. Cell. 2021;184(9):2487–2502 e2413.

    Article  CAS  PubMed  Google Scholar 

  49. Yuan B, Shen C, Luna A, Korkut A, Marks DS, Ingraham J, Sander C. CellBox: interpretable machine learning for perturbation biology with application to the design of cancer combination therapy. Cell Syst. 2021;12(2):128–140 e124.

    Article  CAS  PubMed  Google Scholar 

  50. Kim YG, Kim S, Cho CE, Song IH, Lee HJ, Ahn S, Park SY, Gong G, Kim N. Effectiveness of transfer learning for enhancing tumor classification with a convolutional neural network on frozen sections. Sci Rep. 2020;10(1):21899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mu W, Jiang L, Zhang J, Shi Y, Gray JE, Tunali I, Gao C, Sun Y, Tian J, Zhao X, Sun X, Gillies RJ, Schabath MB. Non-invasive decision support for NSCLC treatment using PET/CT radiomics. Nat Commun. 2020;11(1):5228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jiang Y, Liang X, Wang W, Chen C, Yuan Q, Zhang X, Li N, Chen H, Yu J, Xie Y, Xu Y, Zhou Z, Li G, Li R. Noninvasive prediction of occult peritoneal metastasis in gastric cancer using deep learning. JAMA Netw Open. 2021;4(1):e2032269.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wang L, Jiao Y, Qiao Y, Zeng N, Yu R. A novel approach combined transfer learning and deep learning to predict TMB from histology image. Pattern Recogn Lett. 2020;135:244–8.

    Article  Google Scholar 

  54. Jain MS, Massoud TF. Predicting tumour mutational burden from histopathological images using multiscale deep learning. Nat Mach Intell. 2020;2:356–62.

    Article  Google Scholar 

  55. Kather JN, Pearson AT, Halama N, Jager D, Krause J, Loosen SH, Marx A, Boor P, Tacke F, Neumann UP, Grabsch HI, Yoshikawa T, Brenner H, Chang-Claude J, Hoffmeister M, Trautwein C, Luedde T. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat Med. 2019;25(7):1054–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yamashita R, Long J, Longacre T, Peng L, Berry G, Martin B, Higgins J, Rubin DL, Shen J. Deep learning model for the prediction of microsatellite instability in colorectal cancer: a diagnostic study. Lancet Oncol. 2021;22(1):132–41.

    Article  PubMed  Google Scholar 

  57. Saltz J, Gupta R, Hou L, Kurc T, Singh P, Nguyen V, Samaras D, Shroyer KR, Zhao T, Batiste R, Van Arnam J, Cancer Genome Atlas Research Network, Shmulevich I, Rao AUK, Lazar AJ, Sharma A, Thorsson V. Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images. Cell Rep. 2018;23(1):181–193 e187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bychkov D, Linder N, Turkki R, Nordling S, Kovanen PE, Verrill C, Walliander M, Lundin M, Haglund C, Lundin J. Deep learning based tissue analysis predicts outcome in colorectal cancer. Sci Rep. 2018;8(1):3395.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Akbar S, Peikari M, Salama S, Panah AY, Nofech-Mozes S, Martel AL. Automated and manual quantification of tumour cellularity in digital slides for tumour burden assessment. Sci Rep. 2019;9(1):14099.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Skrede OJ, De Raedt S, Kleppe A, Hveem TS, Liestol K, Maddison J, Askautrud HA, Pradhan M, Nesheim JA, Albregtsen F, Farstad IN, Domingo E, Church DN, Nesbakken A, Shepherd NA, Tomlinson I, Kerr R, Novelli M, Kerr DJ, Danielsen HE. Deep learning for prediction of colorectal cancer outcome: a discovery and validation study. Lancet. 2020;395(10221):350–60.

    Article  CAS  PubMed  Google Scholar 

  61. Ehteshami Bejnordi B, Mullooly M, Pfeiffer RM, Fan S, Vacek PM, Weaver DL, Herschorn S, Brinton LA, van Ginneken B, Karssemeijer N, Beck AH, Gierach GL, van der Laak J, Sherman ME. Using deep convolutional neural networks to identify and classify tumor-associated stroma in diagnostic breast biopsies. Mod Pathol. 2018;31(10):1502–12.

    Article  PubMed  Google Scholar 

  62. Mobadersany P, Yousefi S, Amgad M, Gutman DA, Barnholtz-Sloan JS, Velazquez Vega JE, Brat DJ, Cooper LAD. Predicting cancer outcomes from histology and genomics using convolutional networks. Proc Natl Acad Sci U S A. 2018;115(13):E2970–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xu Y, Hosny A, Zeleznik R, Parmar C, Coroller T, Franco I, Mak RH, Aerts H. Deep learning predicts lung cancer treatment response from serial medical imaging. Clin Cancer Res. 2019;25(11):3266–75.

    Article  PubMed  PubMed Central  Google Scholar 

  64. McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, Back T, Chesus M, Corrado GS, Darzi A, Etemadi M, Garcia-Vicente F, Gilbert FJ, Halling-Brown M, Hassabis D, Jansen S, Karthikesalingam A, Kelly CJ, King D, Ledsam JR, Melnick D, Mostofi H, Peng L, Reicher JJ, Romera-Paredes B, Sidebottom R, Suleyman M, Tse D, Young KC, De Fauw J, Shetty S. International evaluation of an AI system for breast cancer screening. Nature. 2020;577(7788):89–94.

    Article  CAS  PubMed  Google Scholar 

  65. Wang X, Yang W, Weinreb J, Han J, Li Q, Kong X, Yan Y, Ke Z, Luo B, Liu T, Wang L. Searching for prostate cancer by fully automated magnetic resonance imaging classification: deep learning versus non-deep learning. Sci Rep. 2017;7(1):15415.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Zhou Q, Zhou Z, Chen C, Fan G, Chen G, Heng H, Ji J, Dai Y. Grading of hepatocellular carcinoma using 3D SE-DenseNet in dynamic enhanced MR images. Comput Biol Med. 2019;107:47–57.

    Article  PubMed  Google Scholar 

  67. Korfiatis P, Kline TL, Lachance DH, Parney IF, Buckner JC, Erickson BJ. Residual deep convolutional neural network predicts MGMT methylation status. J Digit Imaging. 2017;30(5):622–8.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Shboul, Z. A., J. Chen and , KM Iftekharuddin (2020). Prediction of molecular mutations in diffuse low-grade gliomas using MR imaging features. Sci Rep 10(1): 3711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fassler DJ, Abousamra S, Gupta R, Chen C, Zhao M, Paredes D, Batool SA, Knudsen BS, Escobar-Hoyos L, Shroyer KR, Samaras D, Kurc T, Saltz J. Deep learning-based image analysis methods for brightfield-acquired multiplex immunohistochemistry images. Diagn Pathol. 2020;15(1):100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Choi JH, Kim HA, Kim W, Lim I, Lee I, Byun BH, Noh WC, Seong MK, Lee SS, Kim BI, Choi CW, Lim SM, Woo SK. Early prediction of neoadjuvant chemotherapy response for advanced breast cancer using PET/MRI image deep learning. Sci Rep. 2020;10(1):21149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang S, Shi J, Ye Z, Dong D, Yu D, Zhou M, Liu Y, Gevaert O, Wang K, Zhu Y, Zhou H, Liu Z, Tian J. Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning. Eur Respir J. 2019;53(3):1800986.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Johannet P, Coudray N, Donnelly DM, Jour G, Illa-Bochaca I, Xia Y, Johnson DB, Wheless L, Patrinely JR, Nomikou S, Rimm DL, Pavlick AC, Weber JS, Zhong J, Tsirigos A, Osman I. Using machine learning algorithms to predict immunotherapy response in patients with advanced melanoma. Clin Cancer Res. 2021;27(1):131–40.

    Article  CAS  PubMed  Google Scholar 

  74. Chen M, Zhang B, Topatana W, Cao J, Zhu H, Juengpanich S, Mao Q, Yu H, Cai X. Classification and mutation prediction based on histopathology H&E images in liver cancer using deep learning. NPJ Precis Oncol. 2020;4:14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M, Fenyo D, Moreira AL, Razavian N, Tsirigos A. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med. 2018;24(10):1559–67.

    Article  CAS  PubMed  Google Scholar 

  76. Nagpal K, Foote D, Liu Y, Chen PC, Wulczyn E, Tan F, Olson N, Smith JL, Mohtashamian A, Wren JH, Corrado GS, MacDonald R, Peng LH, Amin MB, Evans AJ, Sangoi AR, Mermel CH, Hipp JD, Stumpe MC. Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer. NPJ Digit Med. 2019;2:48.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Khosravi P, Kazemi E, Imielinski M, Elemento O, Hajirasouliha I. Deep convolutional neural networks enable discrimination of heterogeneous digital pathology images. EBioMedicine. 2018;27:317–28.

    Article  PubMed  Google Scholar 

  78. Haenssle HA, Fink C, Schneiderbauer R, Toberer F, Buhl T, Blum A, Kalloo A, Hassen ABH, Thomas L, Enk A, Uhlmann L, Reader study level-I and level-II Groups, Alt C, Arenbergerova M, Bakos R, Baltzer A, Bertlich I, Blum A, Bokor-Billmann T, Bowling J, Braghiroli N, Braun R, Buder-Bakhaya K, Buhl T, Cabo H, Cabrijan L, Cevic N, Classen A, Deltgen D, Fink C, Georgieva I, Hakim-Meibodi LE, Hanner S, Hartmann F, Hartmann J, Haus G, Hoxha E, Karls R, Koga H, Kreusch J, Lallas A, Majenka P, Marghoob A, Massone C, Mekokishvili L, Mestel D, Meyer V, Neuberger A, Nielsen K, Oliviero M, Pampena R, Paoli J, Pawlik E, Rao B, Rendon A, Russo T, Sadek A, Samhaber K, Schneiderbauer R, Schweizer A, Toberer F, Trennheuser L, Vlahova L, Wald A, Winkler J, Wolbing P, Zalaudek I. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol. 2018;29(8):1836–42.

    Article  CAS  PubMed  Google Scholar 

  79. Azuaje F, Kim SY, Perez Hernandez D, Dittmar G. Connecting histopathology imaging and proteomics in kidney cancer through machine learning. J Clin Med. 2019;8(10):1535.

    Article  CAS  PubMed Central  Google Scholar 

  80. Ribli D, Horvath A, Unger Z, Pollner P, Csabai I. Detecting and classifying lesions in mammograms with deep learning. Sci Rep. 2018;8(1):4165.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Lu Y, Yu Q, Gao Y, Zhou Y, Liu G, Dong Q, Ma J, Ding L, Yao H, Zhang Z, Xiao G, An Q, Wang G, Xi J, Yuan W, Lian Y, Zhang D, Zhao C, Yao Q, Liu W, Zhou X, Liu S, Wu Q, Xu W, Zhang J, Wang D, Sun Z, Gao Y, Zhang X, Hu J, Zhang M, Wang G, Zheng X, Wang L, Zhao J, Yang S. Identification of metastatic lymph nodes in MR imaging with faster region-based convolutional neural networks. Cancer Res. 2018;78(17):5135–43.

    Article  CAS  PubMed  Google Scholar 

  82. Transin S, Souchon R, Gonindard-Melodelima C, de Rozario R, Walker P, Funes de la Vega M, Loffroy R, Cormier L, Rouviere O. Computer-aided diagnosis system for characterizing ISUP grade>/=2 prostate cancers at multiparametric MRI: a cross-vendor evaluation. Diagn Interv Imaging. 2019;100(12):801–11.

    Article  CAS  PubMed  Google Scholar 

  83. Wang S, Burtt K, Turkbey B, Choyke P, Summers RM. Computer aided-diagnosis of prostate cancer on multiparametric MRI: a technical review of current research. Biomed Res Int. 2014;2014:789561.

    PubMed  PubMed Central  Google Scholar 

  84. Reverter JL, Vazquez F, Puig-Domingo M. Diagnostic performance evaluation of a computer-assisted imaging analysis system for ultrasound risk stratification of thyroid nodules. AJR Am J Roentgenol. 2019;213(1):169–74.

    Article  PubMed  Google Scholar 

  85. Rodriguez-Ruiz A, Krupinski E, Mordang JJ, Schilling K, Heywang-Kobrunner SH, Sechopoulos I, Mann RM. Detection of breast cancer with mammography: effect of an artificial intelligence support system. Radiology. 2019;290(2):305–14.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Laganà .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhalla, S., Laganà, A. (2022). Artificial Intelligence for Precision Oncology. In: Laganà, A. (eds) Computational Methods for Precision Oncology. Advances in Experimental Medicine and Biology, vol 1361. Springer, Cham. https://doi.org/10.1007/978-3-030-91836-1_14

Download citation

Publish with us

Policies and ethics