Skip to main content

Valuation Strategies for the Biomass Generated While Producing and Transforming Cocoa into Chocolate

  • Chapter
  • First Online:
Trends in Sustainable Chocolate Production

Abstract

During cocoa processing, a large amount of residual biomass is generated from cocoa pod husks, mucilage exudate, and seed husks. Lack of treatments for its recovery causes serious sustainability problems and means losing products with high commercial and technological potentials. This chapter aims to characterize not only the chemical composition of the residual cocoa biomass but also the different strategies that exist for its recovery. The results indicate that the three above components are a source of essential nutrients rich in valuable compounds (polyphenols, organic acids, methylxanthines, etc.). Based on this composition, valuation strategies applied to different fields, such as the food industry, human health, cosmetics, and bioremediation, are proposed for each one. These advances would help improve some socio-economical and environmental indicators and promote the sustainability of the world’s cocoa production chain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott, A. P., Barron, J. C., Ryder, K. S., & Wilson, D. (2007). Eutectic-based ionic liquids with metal-containing anions and cations. Chemistry–a. European Journal, 13(22), 6495–6501.

    Article  CAS  Google Scholar 

  • Adetunji, L. R., Adekunle, A., Orsat, V., & Raghavan, V. (2017). Advances in the pectin production process using novel extraction techniques: A review. Food Hydrocolloids, 62, 239–250.

    Article  CAS  Google Scholar 

  • Adi-Dako, O., Ofori-Kwakye, K., Manso, S. F., Boakye-Gyasi, M. E., Sasu, C., & Pobee, M. (2016). Physicochemical and antimicrobial properties of cocoa pod husk pectin intended as a versatile pharmaceutical excipient and nutraceutical. Journal of pharmaceutics, 2016, 1–12.

    Article  CAS  Google Scholar 

  • Adomako, D. (1972). Cocoa pod husk pectin. Phytochemistry, 11(3), 1145–1148.

    Article  CAS  Google Scholar 

  • Afoakwa, E. O., Paterson, A., Fowler, M., & Ryan, A. (2008). Flavor formation and character in cocoa and chocolate: A critical review. Critical Reviews in Food Science and Nutrition, 48(9), 840–857.

    Article  CAS  PubMed  Google Scholar 

  • Agus, B. A. P., Mohamad, N. N., & Hussain, N. (2018). Composition of unfermented, unroasted, roasted cocoa beans and cocoa shells from peninsular Malaysia. Journal of Food Measurement and Characterization, 12(4), 2581–2589.

    Article  Google Scholar 

  • Akinjokun, A. I., Petrik, L. F., Ogunfowokan, A. O., Ajao, J., & Ojumu, T. V. (2021). Isolation and characterization of nanocrystalline cellulose from cocoa pod husk (CPH) biomass wastes. Heliyon, 7(4), e06680.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alemawor, F., Dzogbefia, V. P., Oddoye, E. O., & Oldham, J. H. (2009). Effect of Pleurotus ostreatus fermentation on cocoa pod husk composition: Influence of fermentation period and Mn2+ supplementation on the fermentation process. African Journal of Biotechnology, 8(9), 1950–1958.

    CAS  Google Scholar 

  • Alvarez-Rivera, G., Bueno, M., Ballesteros-Vivas, D., Mendiola, J. A., & Ibañez, E. (2020). Pressurized liquid extraction. In Liquid-Phase Extraction (pp. 375–398). Elsevier.

    Chapter  Google Scholar 

  • Antwi, E., Engler, N., Nelles, M., & Schüch, A. (2019). Anaerobic digestion and the effect of hydrothermal pre-treatment on the biogas yield of cocoa pods residues. Waste Management, 88, 131–140.

    Article  CAS  PubMed  Google Scholar 

  • Anvoh, K. Y. B., Zoro Bi, A., & Gnakri, D. (2009). Production and characterization of juice from mucilage of cocoa beans and its transformation into marmalade. Pakistan Journal of Nutrition, 8(2), 129–133.

    Article  CAS  Google Scholar 

  • Aprotosoaie, A. C., Luca, S. V., & Miron, A. (2016). Flavor chemistry of cocoa and cocoa products—An overview. Comprehensive Reviews in Food Science and Food Safety, 15(1), 73–91.

    Article  CAS  PubMed  Google Scholar 

  • Awolu, O., & Oyeyemi, S. O. (2015). Optimization of bioethanol production from cocoa (Theobroma cacao) bean shell. International Journal of Current Microbiology and Applied Sciences, 4(4), 506–514.

    CAS  Google Scholar 

  • Balladares, C., Chóez-Guaranda, I., García, J., Sosa, D., Pérez, S., González, J. E., … Manzano, P. (2016). Physicochemical characterization of Theobroma cacao L. sweatings in Ecuadorian coast. Emirates Journal of Food and Agriculture, 28, 741–745.

    Article  Google Scholar 

  • Barbosa-Pereira, L., Guglielmetti, A., & Zeppa, G. (2018). Pulsed electric field assisted extraction of bioactive compounds from cocoa bean shell and coffee silverskin. Food and Bioprocess Technology, 11(4), 818–835.

    Article  CAS  Google Scholar 

  • Barbosa-Pereira, L., Rojo-Poveda, O., Ferrocino, I., Giordano, M., & Zeppa, G. (2019). Analytical dataset on volatile compounds of cocoa bean shells from different cultivars and geographical origins. Data in Brief, 25, 104268.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barišić, V., Jozinović, A., Flanjak, I., Šubarić, D., Babić, J., Miličević, B., … Ačkar, Đ. (2020). Difficulties with use of cocoa bean Shell in food production and high voltage electrical discharge as a possible solution. Sustainability, 12(10), 3981.

    Article  CAS  Google Scholar 

  • Beg, M. S., Ahmad, S., Jan, K., & Bashir, K. (2017). Status, supply chain and processing of cocoa-a review. Trends in Food Science & Technology, 66, 108–116.

    Article  CAS  Google Scholar 

  • Bondia-Pons, I., Aura, A. M., Vuorela, S., Kolehmainen, M., Mykkänen, H., & Poutanen, K. (2009). Rye phenolics in nutrition and health. Journal of Cereal Science, 49(3), 323–336.

    Article  CAS  Google Scholar 

  • Bonvehí, J. S., & Benería, M. A. (1998). Composition of dietary fibre in cocoa husk. Zeitschrift für Lebensmitteluntersuchung und-Forschung A, 207(2), 105–109.

    Article  Google Scholar 

  • Cádiz-Gurrea, M. D. L. L., Fernández-Ochoa, Á., Leyva-Jiménez, F. J., Guerrero-Muñoz, N., Villegas-Aguilar, M. D. C., Pimentel-Moral, S., … Segura-Carretero, A. (2020). LC-MS and spectrophotometric approaches for evaluation of bioactive compounds from Peru cocoa by-products for commercial applications. Molecules, 25(14), 3177.

    Article  PubMed Central  CAS  Google Scholar 

  • Calatayud, M., López-de-Dicastillo, C., López-Carballo, G., Vélez, D., Muñoz, P. H., & Gavara, R. (2013). Active films based on cocoa extract with antioxidant, antimicrobial and biological applications. Food Chemistry, 139(1–4), 51–58.

    Article  CAS  PubMed  Google Scholar 

  • Campos-Vega, R., Nieto-Figueroa, K. H., & Oomah, B. D. (2018). Cocoa (Theobroma cacao L.) pod husk: Renewable source of bioactive compounds. Trends in Food Science & Technology, 81, 172–184.

    Article  CAS  Google Scholar 

  • Chandrasekaran, M. (2012). Valorization of food processing byproducts. CRC Press.

    Book  Google Scholar 

  • Chávez Miranda, J. T. (2019). Utilización de las bacterias ácido lácticas provenientes del mucilago de cacao (theobroma cacao l.) nacional para mejorar el sabor y textura del queso mozzarella (Bachelors thesis, Quevedo-UTEQ).

    Google Scholar 

  • Cruz, G., Pirilä, M., Huuhtanen, M., Carrión, L., Alvarenga, E., & Keiski, R. L. (2012). Production of activated carbon from cocoa (Theobroma cacao) pod husk. Journal of Civil and Environmental Engineering, 2(2), 1–6.

    Google Scholar 

  • De Araújo Veloso, M. C. R., Scatolino, M. V., Gonçalves, M. M. B. P., Valle, M. L. A., de Paula Protásio, T., Mendes, L. M., & Junior, J. B. G. (2021). Sustainable valorization of recycled low-density polyethylene and cocoa biomass for composite production. Environmental Science and Pollution Research, 28, 1–13.

    Article  CAS  Google Scholar 

  • Delgado-Ospina, J., Acquaticci, L., Molina-Hernandez, J. B., Rantsiou, K., Martuscelli, M., Kamgang-Nzekoue, A. F., … Chaves-López, C. (2021). Exploring the capability of yeasts isolated from Colombian fermented cocoa beans to form and degrade biogenic amines in a lab-scale model system for cocoa fermentation. Microorganisms, 9(1), 28.

    Article  CAS  Google Scholar 

  • Diniz, D. D. M., Druzian, J. I., & Audibert, S. (2012). Produção de goma xantana por cepas nativas de Xanthomonas campestris a partir de casca de cacau ou soro de leite. Polímeros, 22, 278–281.

    Article  CAS  Google Scholar 

  • Dos Santos Costa, R., de Almeida, S. S., Cavalcanti, E. D. A. C., Freire, D. M. G., Moura-Nunes, N., Monteiro, M., & Perrone, D. (2021). Enzymes produced by solid state fermentation of agro-industrial byproducts release ferulic acid in bioprocessed whole-wheat breads. Food Research International, 140, 109843.

    Article  CAS  Google Scholar 

  • El-Saied, H. M., Morsi, M. K., & Amer, M. M. A. (1981). Composition of cocoa shell fat as related to cocoa butter. Zeitschrift für Ernährungswissenschaft, 20(2), 145–151.

    Article  CAS  PubMed  Google Scholar 

  • Enríquez, G. A. (2010). Cacao orgánico guía para productores ecuatorianos (No. F08 20). Instituto Nacional Autónomo de Investigaciones Agropecuarias.

    Google Scholar 

  • Galanakis, C. M. (2020). The food systems in the era of the coronavirus (COVID-19) pandemic crisis. Food, 9(4), 523.

    Article  CAS  Google Scholar 

  • Ginting, B., & Purnama, A. (2020). Chemical composition and cytotoxic activities of n-hexane extract from cacao pod husk (Theobroma cacao L.). Chemical Data Collections, 30, 100553.

    Article  CAS  Google Scholar 

  • Global Market Insights. (2021). Food Minerals Market Size By Product (Industry Analysis Report, Regional Outlook, Application Potential, Price Trends, Competitive Market Share & Forecast, 2019–2025. https://www.gminsights.com/industry-analysis/food-minerals-market

  • Gogate, P. R., & Pandit, A. B. (2005). A review and assessment of hydrodynamic cavitation as a technology for the future. Ultrasonics Sonochemistry, 12(1–2), 21–27.

    Article  CAS  PubMed  Google Scholar 

  • González-Alejo, F. A., Barajas-Fernández, J., Olán-Acosta, M. D. L. Á., Lagunes-Gálvez, L. M., & García-Alamilla, P. (2019). Supercritical fluid extraction of fat and caffeine with theobromine retention in the cocoa Shell. PRO, 7(6), 385.

    Google Scholar 

  • Goya Baquerizo, M. J. (2013). Obtención de una bebida alcohólica a partir de mucílago de cacao, mediante fermentación anaerobia en diferentes tiempos de inoculación (Bachelor's thesis, q).

    Google Scholar 

  • Goyes Tituaña, P. G. (2020). Desarrollo de una bebida a base de harina de cáscara de cacao (Theobroma cacao L.) y salvado de arroz (Oryza sativa). In con doble fermentación (Bachelor's thesis, Universidad Técnica de Ambato. Facultad de Ciencia e Ingeniería en Alimentos y Biotecnología. Carrera de Ingeniería en Alimentos).

    Google Scholar 

  • Grand View Research (2021) Polyphenols Market Size Worth $2.08 Billion By 2025. https://www.grandviewresearch.com/press-release/global-polyphenols-market

  • Grillo, G., Boffa, L., Binello, A., Mantegna, S., Cravotto, G., Chemat, F., … Telysheva, G. (2019). Cocoa bean shell waste valorisation; extraction from lab to pilot-scale cavitational reactors. Food Research International, 115, 200–208.

    Article  CAS  PubMed  Google Scholar 

  • Grob, L., Ott, E., Schnell, S., & Windhab, E. J. (2021). Characterization of endocarp powder derived from cocoa pod. Journal of Food Engineering, 305, 110591.

    Article  CAS  Google Scholar 

  • Guest, D. (2007). Black pod: Diverse pathogens with a global impact on cocoa yield. Phytopathology, 97(12), 1650–1653.

    Article  PubMed  Google Scholar 

  • Handojo, L., & Indarto, A. (2018). Cocoa bean skin waste as potential raw material for liquid smoke production. Environmental Technology, 41(8), 1044–1053.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, C. L., & Cheong, D. Y. (2019). Agricultural waste management in food processing. In Handbook of farm, dairy and food machinery engineering (pp. 673–716). Academic Press.

    Chapter  Google Scholar 

  • Hennessey-Ramos, L., Murillo-Arango, W., Vasco-Correa, J., & Paz Astudillo, I. C. (2021). Enzymatic extraction and characterization of pectin from cocoa pod husks (Theobroma cacao L.) using Celluclast® 1.5 L. Molecules, 26(5), 1473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hikmah, H., Alam, G., Syamsu, J. A., Salengke, S., & Nahariah, N. (2020, April). The digestive and physiological visceral organs of male Bali cattle were fed with cocoa bean shell. In IOP Conference Series: Earth and Environmental Science (Vol. 492 (1), p. 012063). IOP Publishing.

    Google Scholar 

  • Igwe, J. C., Abia, A. A., & Nwankwo, S. O. (2011). Bioremediation of Al (III), Cr (VI) and Ni (II) ions from aqueous solution using cocoa pod husk: Kinetics and intraparticle diffusivities. Bioremediation, Biodiversity and Bioavailability, 5(1), 28–35.

    Google Scholar 

  • International Cocoa Organization. (2021). ICCO quarterly bulletin of cocoa statistics, Vol. XLVII, No. 1.

    Google Scholar 

  • Jaimes, Y. L. V., Guerrero, J. S. R., & Castrillo, L. C. L. (2017). Caracterización fisicoquímica, microbiológica y funcional de harina de cáscara de cacao (Theobroma cacao L.) variedad CCN-51. Cuaderno activa, 9, 65–75.

    Google Scholar 

  • Jokić, S., Gagić, T., Knez, Ž., Šubarić, D., & Škerget, M. (2018). Separation of active compounds from food byproduct (cocoa shell) using subcritical water extraction. Molecules, 23(6), 1408.

    Article  PubMed Central  CAS  Google Scholar 

  • Jokić, S., Nastić, N., Vidović, S., Flanjak, I., Aladić, K., & Vladić, J. (2020). An approach to value cocoa bean byproduct based on subcritical water extraction and spray drying using different carriers. Sustainability, 12(6), 2174.

    Article  CAS  Google Scholar 

  • Jokić, S., Pavlović, N., Jozinović, A., Ačkar, Đ., Babić, J., & Šubarić, D. (2019). High-voltage electric discharge extraction of bioactive compounds from the cocoa bean shell. Chemical and Biochemical Engineering Quarterly, 33(2), 271–280.

    Article  Google Scholar 

  • Kayaputri, I. L., Djali, M., Sukri, N., & Fazaryasti, R. H. (2020, February). The antimicrobial effectiveness of cacao shell and cacao husk combination on inhibition of pathogenic bacteria in food products. In IOP Conference Series: Earth and Environmental Science (Vol. 443 (1), p. 012077). IOP Publishing.

    Google Scholar 

  • Ko, M. J., Nam, H. H., & Chung, M. S. (2020). Subcritical water extraction of bioactive compounds from Orostachys japonicus a. Berger (Crassulaceae). Scientific Reports, 10(1), 1–10.

    Article  CAS  Google Scholar 

  • Lateef, A., Oloke, J. K., Kana, E. B. G., Oyeniyi, S. O., Onifade, O. R., Oyeleye, A. O., & Oladosu, O. C. (2008). Rhizopus stolonifer LAU 07: A novel source of fructosyltransferase. Chemical Papers, 62(6), 635–638.

    Article  CAS  Google Scholar 

  • Lu, F., Rodriguez-Garcia, J., Van Damme, I., Westwood, N. J., Shaw, L., Robinson, J. S., … Charalampopoulos, D. (2018). Valorisation strategies for cocoa pod husk and its fractions. Current Opinion in Green and Sustainable Chemistry, 14, 80–88.

    Article  Google Scholar 

  • Maleka, D. (2016). Assessment of the implementation of alternative process technologies for rural heat and power production from cocoa pod husks. Energiteknik.

    Google Scholar 

  • Maneerung, T., Liew, J., Dai, Y., Kawi, S., Chong, C., & Wang, C. H. (2016). Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies. Bioresource Technology, 200, 350–359.

    Article  CAS  PubMed  Google Scholar 

  • Mariatti, F., Gunjević, V., Boffa, L., & Cravotto, G. (2021). Process intensification technologies for the recovery of valuable compounds from cocoa byproducts. Innovative Food Science & Emerging Technologies, 68, 102601.

    Article  CAS  Google Scholar 

  • MarketsandMarkets. (2021a). Dietary Fibers Market worth $9.6 billion by 2025 https://www.marketsandmarkets.com/PressReleases/dietary-fibers.asp

  • MarketsandMarkets. (2021b). Pectin Market by Type (HM Pectin, LM Pectin), Raw Material (Citrus fruits, Apples, Sugar beet), Function, Applica-tion (Food & beverages, Pharmaceutical & Personal Care Products, Industrial Applications), and Region-Global Fore-cast to 2025. https://www.marketsandmarkets.com/Market-Reports/pectin-market-139129149.html

  • MarketsandMarkets (2021c) Plant extracts market by type (phytomedicines & herbal extracts, spices, essential oils, flavors & fragrances), application (pharmaceutical & dietary supplements, food & beverages, cosmetics), sources, and region - forecast to 2026. https://www.marketsandmarkets.com/Market-Reports/plant-extracts-market-942.html

    Google Scholar 

  • Marić, M., Grassino, A. N., Zhu, Z., Barba, F. J., Brnčić, M., & Brnčić, S. R. (2018). An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and byproducts: Ultrasound-, microwaves-, and enzyme-assisted extraction. Trends in Food Science & Technology, 76, 28–37.

    Article  CAS  Google Scholar 

  • Martínez, R., Torres, P., Meneses, M. A., Figueroa, J. G., Pérez-Álvarez, J. A., & Viuda-Martos, M. (2012). Chemical, technological and in vitro antioxidant properties of cocoa (Theobroma cacao L.) co-products. Food Research International, 49(1), 39–45.

    Article  CAS  Google Scholar 

  • Minjares-Fuentes, R., Femenia, A., Garau, M. C., Meza-Velázquez, J. A., Simal, S., & Rosselló, C. (2014). Ultrasound-assisted extraction of pectins from grape pomace using citric acid: A response surface methodology approach. Carbohydrate Polymers, 106, 179–189.

    Article  CAS  PubMed  Google Scholar 

  • Mora-Cortés, D., Gomez, Y. G., & Pacheco, S. (2020). Improvement of biomethane potential by anaerobic co-digestion of sewage sludge and cocoa pod husks. International Journal of Technology, 11(3), 482–491.

    Article  Google Scholar 

  • Muharja, M., Darmayanti, R. F., Palupi, B., Rahmawati, I., Fachri, B. A., Setiawan, F. A., … Putri, D. K. Y. (2021). Optimization of microwave-assisted alkali pretreatment for enhancement of delignification process of cocoa pod husk. Bulletin of Chemical Reaction Engineering & Catalysis, 16(1), 31–43.

    Article  CAS  Google Scholar 

  • Muñoz-Almagro, N., Valadez-Carmona, L., Mendiola, J. A., Ibáñez, E., & Villamiel, M. (2019). Structural characterisation of pectin obtained from cacao pod husk. Comparison of conventional and subcritical water extraction. Carbohydrate Polymers, 217, 69–78.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen, V. T., Pham, T. D., Vu, L. B., Nguyen, V. H., & Tran, N. L. (2021). Microwave-assisted extraction for maximizing the yield of phenolic compounds and antioxidant capacity from cacao pod husk (Theobroma cacao L.). Current Nutrition & Food Science, 17(2), 225–237.

    Article  CAS  Google Scholar 

  • Nieto-Figueroa, K. H., Mendoza-García, N. V., Gaytán-Martínez, M., Wall-Medrano, A., Loarca-Piña, M. G. F., & Campos-Vega, R. (2020). Effect of drying methods on the gastrointestinal fate and bioactivity of phytochemicals from cocoa pod husk: In vitro and in silico approaches. Food Research International, 137, 109725.

    Article  CAS  PubMed  Google Scholar 

  • Njoku, V. O. (2014). Biosorption potential of cocoa pod husk for the removal of Zn (II) from aqueous phase. Journal of Environmental Chemical Engineering, 2(2), 881–887.

    Article  CAS  Google Scholar 

  • Njoku, V. O., Ayuk, A. A., Ejike, E. E., Oguzie, E. E., Duru, C. E., & Bello, O. S. (2011). Cocoa pod husk as a low cost biosorbent for the removal of Pb (II) and Cu (II) from aqueous solutions. Australian Journal of Basic and Applied Sciences, 5(8), 101–110.

    CAS  Google Scholar 

  • Obike, A. I., Igwe, J. C., Emeruwa, C. N., & Uwakwe, K. J. (2018). Equilibrium and kinetic studies of Cu (II), Cd (II), Pb (II) and Fe (II) adsorption from aqueous solution using cocoa (Theobroma cacao) pod husk. Journal of Applied Sciences and Environmental Management, 22(2), 182–190.

    Article  CAS  Google Scholar 

  • Ochoa, C., Hernández, M. A., Bayona, O. L., Cabeza, I. O., & Candela, A. M. (2021a). Value-added by-products during dark fermentation of agro-industrial residual biomass: Metabolic pathway analysis. Waste and Biomass Valorization, 12, 1–12.

    Article  CAS  Google Scholar 

  • Ochoa, C., Hernandez, M. A., Bayona, O. L., Camargo, H. A., Cabeza, I. O., & Candela, A. M. (2021b). Phosphorus recovery by struvite from anaerobic co-digestion effluents during residual biomass treatment. Biomass Conversion and Biorefinery, 11(2), 261–274.

    Article  CAS  Google Scholar 

  • Oddoye, E. O., Agyente-Badu, C. K., & Gyedu-Akoto, E. (2013). Cocoa and its byproducts: Identification and utilization. In chocolate in health and nutrition (pp. 23–37). Humana Press.

    Chapter  Google Scholar 

  • Oduro-Mensah, D., Ocloo, A., Nortey, T., Antwi, S., Okine, L. K., & Adamafio, N. A. (2020). Nutritional value and safety of animal feed supplemented with Talaromyces verruculosus-treated cocoa pod husks. Scientific Reports, 10(1), 1–16.

    Article  CAS  Google Scholar 

  • Okiyama, D. C., Navarro, S. L., & Rodrigues, C. E. (2017). Cocoa shell and its compounds: Applications in the food industry. Trends in Food Science & Technology, 63, 103–112.

    Article  CAS  Google Scholar 

  • Okiyama, D. C., Soares, I. D., Cuevas, M. S., Crevelin, E. J., Moraes, L. A., Melo, M. P., … Rodrigues, C. E. (2018). Pressurized liquid extraction of flavanols and alkaloids from cocoa bean shell using ethanol as solvent. Food Research International, 114, 20–29.

    Article  CAS  PubMed  Google Scholar 

  • Okiyama, D. C., Soares, I. D., Toda, T. A., Oliveira, A. L., & Rodrigues, C. E. (2019). Effect of the temperature on the kinetics of cocoa bean shell fat extraction using pressurized ethanol and evaluation of the lipid fraction and defatted meal. Industrial Crops and Products, 130, 96–103.

    Article  CAS  Google Scholar 

  • Olu-Owolabi, B., Oputu, O., Adebowale, K., et al. (2012). Biosorption of Cd2+ and Pb2+ ions onto mango stone and cocoa pod waste: Kinetic and equilibrium studies. Scientific Research and Essays, 7(15), 1614–1629.

    Article  CAS  Google Scholar 

  • Osundahunsi, O. F., Bolade, M. K., & Akinbinu, A. A. (2007). Effect of cocoa shell ash as an alkalizing agent on cocoa products. Journal of Applied Sciences, 7, 1674–1678.

    Article  CAS  Google Scholar 

  • Pätzold, R., & Brückner, H. (2006). Gas chromatographic determination and mechanism of formation of D-amino acids occurring in fermented and roasted cocoa beans, cocoa powder, chocolate and cocoa shell. Amino Acids, 31(1), 63–72.

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulou, E. L., Paul, U. C., Tran, T. N., Suarato, G., Ceseracciu, L., Marras, S., … Athanassiou, A. (2019). Sustainable active food packaging from poly (lactic acid) and cocoa bean shells. ACS Applied Materials & Interfaces, 11(34), 31317–31327.

    Article  CAS  Google Scholar 

  • Pérez, E. E. (2018). The use of cocoa (Theobroma cacao L) for processing residues. In The Uses of Cocoa and Cupuacu Byproducts in Industry, Health, and Gastronomy. Nova Science Publishers.

    Google Scholar 

  • Quiles, A., Campbell, G. M., Struck, S., Rohm, H., & Hernando, I. (2018). Fiber from fruit pomace: A review of applications in cereal-based products. Food Reviews International, 34(2), 162–181.

    Article  CAS  Google Scholar 

  • Rahman, R., Laconi, E. B., Jayanegara, A., & Astuti, D. A. (2021, March). Effect of dietary black soldier fly larvae (Hermetia illucens) and bioconversion product of cocoa pod husk on performance and hematological profile of sheep. In IOP Conference Series: Materials Science and Engineering 1098(6), 062058). IOP Publishing.

    Google Scholar 

  • Rangel, C. J., Hernández, M. A., Mosquera, J. D., Castro, Y., Cabeza, I. O., & Acevedo, P. A. (2021). Hydrogen production by dark fermentation process from pig manure, cocoa mucilage, and coffee mucilage. Biomass Conversion and Biorefinery, 11(2), 241–250.

    Article  CAS  Google Scholar 

  • Rao, L. V., Goli, J. K., Gentela, J., & Koti, S. (2016). Bioconversion of lignocellulosic biomass to xylitol: An overview. Bioresource Technology, 213, 299–310.

    Article  CAS  Google Scholar 

  • Rezania, S., & Mohamad, S. E. (2020). Response surface methodology for optimization of ethanol production from cocoa waste. Journal of Energy and Environmental Pollution, 1(1), 7–12.

    Article  Google Scholar 

  • Rinaldi, M., Littardi, P., Paciulli, M., Caligiani, A., & Chiavaro, E. (2020). Effect of cocoa bean shells granulometries on qualitative properties of gluten-free bread during storage. European Food Research and Technology, 246, 1583–1590.

    Article  CAS  Google Scholar 

  • Rodrigues, C., Woiciechowski, A. L., Letti, L., Karp, S. G., Goelzer, F. D., Sobral, K. C. A., … Soccol, C. R. (2016). Materiais lignocelulósicos como matéria-prima para a obtenção de biomoléculas de valor comercial. RESENDE, RR Biotecnologia aplicada à agro&indústria: fundamentos e aplicações, 4, 283–314.

    Google Scholar 

  • Roini, C., Limatahu, N. A., & Hartati, T. M. (2019). Characterization of cocoa pulp (Theobroma cacao L) from South Halmahera as an alternative feedstock for bioethanol production. In IOP Conference Series: Earth and Environmental Science (Vol. 276(1), p. 012038). IOP Publishing.

    Google Scholar 

  • Rojo-Poveda, O., Barbosa-Pereira, L., Mateus-Reguengo, L., Bertolino, M., Stévigny, C., & Zeppa, G. (2019). Effects of particle size and extraction methods on cocoa bean shell functional beverage. Nutrients, 11(4), 867.

    Article  CAS  PubMed Central  Google Scholar 

  • Rojo-Poveda, O., Barbosa-Pereira, L., Zeppa, G., & Stévigny, C. (2020). Cocoa bean Shell—A by-product with nutritional properties and biofunctional potential. Nutrients, 12(4), 1123.

    Article  CAS  PubMed Central  Google Scholar 

  • Rossin, D., Barbosa-Pereira, L., Iaia, N., Sottero, B., Danzero, A. C., Poli, G., … Biasi, F. (2021). Protective effect of cocoa bean Shell against intestinal damage: An example of byproduct valorization. Antioxidants, 10(2), 280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruesgas-Ramón, M., Figueroa-Espinoza, M. C., & Durand, E. (2017). Application of deep eutectic solvents (DES) for phenolic compounds extraction: Overview, challenges, and opportunities. Journal of Agricultural and Food Chemistry, 65(18), 3591–3601.

    Article  PubMed  CAS  Google Scholar 

  • Ruesgas-Ramón, M., Suárez-Quiroz, M. L., González-Ríos, O., Baréa, B., Cazals, G., Figueroa-Espinoza, M. C., & Durand, E. (2020). Biomolecules extraction from coffee and cocoa by-and co-products using deep eutectic solvents. Journal of the Science of Food and Agriculture, 100(1), 81–91.

    Article  PubMed  CAS  Google Scholar 

  • Sakagami, H., Satoh, K., Fukamachi, H., Ikarashi, T., Shimizu, A., Yano, K., … Osawa, K. (2008). Anti-HIV and vitamin C-synergized radical scavenging activity of cacao husk lignin fractions. In Vivo, 22(3), 327–332.

    PubMed  Google Scholar 

  • Salim, M. A. (2013). The time variation of Saccharomyces cerevisiae inoculation in simultaneous saccharification and fermentation of cocoa (Theobroma cacao L.) pod for bioethanol production. Journal of Asian Scientific Research, 3(3), 268.

    Google Scholar 

  • Santana, P., Vera, J., Vallejo, C., & Alvarez, A. (2018). Mucilago de cacao, Nacional y Trinitario para la obtención de una bebida hidratante (p. 4). Universidad Ciencia y Tecnología.

    Google Scholar 

  • Sato, M. K., de Lima, H. V., Costa, A. N., Rodrigues, S., Pedroso, A. J. S., & de Freitas Maia, C. M. B. (2019). Biochar from acai agroindustry waste: Study of pyrolysis conditions. Waste Management, 96, 158–167.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, R. (2014). Polyphenols in health and disease: Practice and mechanisms of benefits. In Polyphenols in human health and disease (pp. 757–778). Academic.

    Chapter  Google Scholar 

  • Syamsiro, M., Saptoadi, H., Tambunan, B. H., & Pambudi, N. A. (2012). A preliminary study on use of cocoa pod husk as a renewable source of energy in Indonesia. Energy for Sustainable Development, 16(1), 74–77.

    Article  CAS  Google Scholar 

  • Thomsen, S. T., Londoño, J. E. G., Schmidt, J. E., & Kádár, Z. (2015). Comparison of different pre-treatment strategies for ethanol production of west African biomass. Applied Biochemistry and Biotechnology, 175(5), 2589–2601.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, S. O., & Rough, S. L. (2021). The densification of cocoa bean shells for bioenergy purposes. Biomass and Bioenergy, 148, 106057.

    Article  CAS  Google Scholar 

  • Tiburcio, P. B. (2017). Solid-state fermentation of Theobroma cacao pod husk using Rhizopus stoloniffer-prospection of biomolecules.

    Google Scholar 

  • Torres, C. A. V., Ocampo, R. D., Rodríguez, W. M., Velasco, R. S., Chang, J. F. V., & Cedeño, C. B. (2016). Utilización del mucílago de cacao, tipo nacional y trinitario, en la obtención de jalea. Revista ESPAMCIENCIA ISSN 1390–8103, 7(1), 51–58.

    Google Scholar 

  • Tran, A. X. (2021). Microencapsulation of phenolic-enriched extract from cocoa pod husk (Theobroma cacao L.). Powder Technology, 386, 136–143.

    Article  CAS  Google Scholar 

  • Tsai, W. T., Bai, Y. C., Lin, Y. Q., Lai, Y. C., & Tsai, C. H. (2020). Porous and adsorption properties of activated carbon prepared from cocoa pod husk by chemical activation. Biomass Conversion and Biorefinery, 10(1), 35–43.

    Article  CAS  Google Scholar 

  • Utami, R. R., Armunanto, R., & Supriyanto, S. R. A. (2016). Effects of cocoa bean (Theobroma cacao L.) fermentation on phenolic content, antioxidant activity and functional group of cocoa bean shell. Pakistan Journal of Nutrition, 15, 948–953.

    Article  CAS  Google Scholar 

  • Valadez-Carmona, L., Ortiz-Moreno, A., Ceballos-Reyes, G., Mendiola, J. A., & Ibáñez, E. (2018). Valorization of cacao pod husk through supercritical fluid extraction of phenolic compounds. The Journal of Supercritical Fluids, 131, 99–105.

    Article  CAS  Google Scholar 

  • Valadez-Carmona, L., Plazola-Jacinto, C. P., Hernández-Ortega, M., Hernández-Navarro, M. D., Villarreal, F., Necoechea-Mondragón, H., … Ceballos-Reyes, G. (2017). Effects of microwaves, hot air and freeze-drying on the phenolic compounds, antioxidant capacity, enzyme activity and microstructure of cacao pod husks (Theobroma cacao L.). Innovative Food Science & Emerging Technologies, 41, 378–386.

    Article  CAS  Google Scholar 

  • Vásquez, Z. S., de Carvalho Neto, D. P., Pereira, G. V., Vandenberghe, L. P., de Oliveira, P. Z., Tiburcio, P. B., … Soccol, C. R. (2019). Biotechnological approaches for cocoa waste management: A review. Waste Management, 90, 72–83.

    Article  PubMed  Google Scholar 

  • Vriesmann, L. C., Amboni, R. D. D. M. C., & de Oliveira Petkowicz, C. L. (2011). Cacao pod husks (Theobroma cacao L.): Composition and hot-water-soluble pectins. Industrial Crops and Products, 34(1), 1173–1181.

    Article  CAS  Google Scholar 

  • Vuong, Q. V. (2017). Utilisation of bioactive compounds from agricultural and food production waste. CRC Press.

    Book  Google Scholar 

  • Yapo, B. M., Besson, V., Koubala, B. B., & Koffi, K. L. (2013). Adding value to cacao pod husks as a potential antioxidant-dietary fiber source. American Journal of Food and Nutrition, 1(3), 38–46.

    CAS  Google Scholar 

  • Yuli, Y., Eka, S., & Yazmendra, R. (2021, February). Biomass waste of cocoa skin for basic activated carbon as source of eco-friendly energy storage. In Journal of Physics: Conference Series (Vol. 1788 (1), p. 012020). IOP Publishing.

    Google Scholar 

  • Yusof, A. H., Abd Gani, S. S., Zaidan, U. H., Halmi, M. I. E., & Zainudin, B. H. (2019). Optimization of an ultrasound-assisted extraction condition for flavonoid compounds from cocoa shells (Theobroma cacao) using response surface methodology. Molecules, 24(4), 711.

    Article  CAS  Google Scholar 

  • Zinla, D., Gbaha, P., Koffi, P. M. E., & Koua, B. K. (2021). Characterization of rice, coffee and cocoa crops residues as fuel of thermal power plant in Côte d’Ivoire. Fuel, 283, 119250.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Édgar Pérez-Esteve .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chávez, J.A.G., Baviera, J.M.B., Pérez-Esteve, É. (2022). Valuation Strategies for the Biomass Generated While Producing and Transforming Cocoa into Chocolate. In: Galanakis, C.M. (eds) Trends in Sustainable Chocolate Production. Springer, Cham. https://doi.org/10.1007/978-3-030-90169-1_10

Download citation

Publish with us

Policies and ethics