Skip to main content

Improved U-Net Network for Segmentation on Femur Images

  • Conference paper
  • First Online:
Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD 2021)

Abstract

Automatic segmentation of the femur from computed tomography (CT) bodies is a critical and challenging task for computer-aided diagnosis in orthopedic surgery. A femur segmentation method based on improved U-Net is proposed to address the problems of missed detection, false detection and low segmentation accuracy in the femur region due to the small size of the proximal femoral region and the ineffectiveness of U-Net in extracting small target femur features, etc. The method introduces a residual module and an attention mechanism in the U-Net network, which enhances the features of small target femurs. Experimental results on the dataset provided by the PLA General Hospital show that the Intersection over Union (IoU), the check-all rate (Recall), the check-accuracy rate (Precision), and the F-score achieved using this method are 86.02%, 91.73%, 89.42%, and 90.73%, respectively. Compared with the existing semantic segmentation networks U-Net, ResNet, SegNet, etc., this method can focus more on the segmentation effect of small target femurs without affecting the segmentation of large target femurs, thus improving the overall segmentation performance capability of femur images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nguyen, H.T., Worring, M., et al.: Watersnakes: energy-driven watershed segmentation. In: IEEE Transactions on Pattern Analysis & Machine Intelligence (2003)

    Google Scholar 

  2. Qu, Y.-H., Gong, M., Liao, Y.-K., et al.: Brain MR image segmentation algorithm based on improved canny operator. China Med. Equip. 33(11), 37-39+65 (2018)

    Google Scholar 

  3. Dong ,Y.: Research on RGB-D image segmentation algorithm based on edge information. Nanjing University of Posts and Telecommunications, Nanjing (2018)

    Google Scholar 

  4. Liu, Y.-Y., Wang, Y.-Y., Yu, H.-Y., et al.: Straw cover detection based on multi-threshold image segmentation algorithm. J. Agric. Mach. 49(12), 27-35+55 (2018)

    Google Scholar 

  5. Chen, J.-P.: Non-Uniform Illumination Image Thresholding Research. Hunan University of Technology, Hunan (2017)

    Google Scholar 

  6. Qiu-ling, J., Xin, W.: Brain tumor image segmentation based on region growth algorithm. J. Changchun Univ. Technol. 39(05), 490–493 (2018)

    Google Scholar 

  7. Qiu-ling, J., Xin, W.: Improved image segmentation of regionally grown brain tumors based on electrical potential energy. Softw. Eng. 21(08), 1–3 (2018)

    Google Scholar 

  8. Cao, Y-H., Xu, M., Liu, S.-A., et al.: A review of medical image segmentation research based on deep learning. Comput. Appl. 1–19 (2021)

    Google Scholar 

  9. Wu, X.: An Iterative Convolutional Neural Network Algorithm Improves Electron Microscopy Image Segmentation. Computerence (2015)

    Google Scholar 

  10. Cernazanu-Glavan, C., Holban, S.: Segmentation of bone structure in x-ray images using convolutional neural network. Adv. Electr. Comput. Eng. 13(1), 87–94 (2013)

    Article  Google Scholar 

  11. Korez, R., Likar, B., Pernuš, F., Vrtovec, T.: Model-based segmentation of vertebral bodies from MR images with 3D CNNs. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 433–441. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_50

    Chapter  Google Scholar 

  12. Zhou, X., Ito, T., Takayama, R., Wang, S., Hara, T., Fujita, H.: Three-dimensional CT image segmentation by combining 2D fully convolutional network with 3D majority voting. In: Carneiro, G., et al. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 111–120. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46976-8_12

    Chapter  Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Book  Google Scholar 

  14. Milletari, F, Navab, N., Ahmadi, S. A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV). IEEE (2016)

    Google Scholar 

  15. Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C.: The importance of skip connections in biomedical image segmentation. In: Carneiro, G., et al. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 179–187. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46976-8_19

    Chapter  Google Scholar 

  16. Brosch, T., Tang, L., Yoo, Y., et al.: Deep 3D Convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans. Med. Imaging 35(5), 1229–1239 (2016)

    Article  Google Scholar 

  17. Wang, Z., Zou, Y., Liu, P.X.: Hybrid dilation and attention residual U-Net for medical image segmentation. Comput. Biol. Med. 134, 104449 (2021). https://doi.org/10.1016/j.compbiomed.2021.104449

    Article  Google Scholar 

  18. Wu, C.-Z., Sun, J., Wang, J., Xu, L.-F., Zhan, S.: Encoding-decoding network with pyramid self-attention module for retinal vessel segmentation. Int. J. Autom. Comput. 2, 1–8 (2021). https://doi.org/10.1007/s11633-020-1277-0

    Article  Google Scholar 

  19. Wang, Y.-G., Wang, M., Han, J.-G., et al.: R-U-net neural network for automatic segmentation of femur area. Mini-Comput. Syst. 40(04), 839–844 (2019)

    Google Scholar 

  20. Chen, Z., Joyce, H., Keyak, et al.: ST-V-Net: incorporating shape prior into convolutional neural networks for proximal femur segmentation. Comp. Intell. Syst. (2021)

    Google Scholar 

  21. Bjornsson, P.A., Helgason, B., Palsson, H., et al.: Automated Femur Segmentation from Computed Tomography Images Using A Deep Neural Network (2021)

    Google Scholar 

  22. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning, pp, 448–456. Springer, Cham (2015)

    Google Scholar 

  23. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the14th International Conference on Artificial Intelligence and Statistics. Brookline, PMLR, 315–323 (2015)

    Google Scholar 

  24. Boer, P.T., Kroese, D.P., Mannor, S., et al.: A tutorial on the cross-entropy method. Ann. Oper. Res. 134(1), 19–67 (2005)

    Article  MathSciNet  Google Scholar 

  25. Long, J., Helhamer, E., Darell, T.: Fully Convolutional networks for semantic segmentation. In: Computer Vision and Pattern Recognition. Boston: The IEEE Conference, pp. 3431–3440 (2015)

    Google Scholar 

  26. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  27. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Patt. Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, J., Han, J., Li, J., Du, G. (2022). Improved U-Net Network for Segmentation on Femur Images. In: Xie, Q., Zhao, L., Li, K., Yadav, A., Wang, L. (eds) Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery. ICNC-FSKD 2021. Lecture Notes on Data Engineering and Communications Technologies, vol 89. Springer, Cham. https://doi.org/10.1007/978-3-030-89698-0_6

Download citation

Publish with us

Policies and ethics