Skip to main content

PialNN: A Fast Deep Learning Framework for Cortical Pial Surface Reconstruction

  • Conference paper
  • First Online:
Machine Learning in Clinical Neuroimaging (MLCN 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13001))

Included in the following conference series:

Abstract

Traditional cortical surface reconstruction is time consuming and limited by the resolution of brain Magnetic Resonance Imaging (MRI). In this work, we introduce Pial Neural Network (PialNN), a 3D deep learning framework for pial surface reconstruction. PialNN is trained end-to-end to deform an initial white matter surface to a target pial surface by a sequence of learned deformation blocks. A local convolutional operation is incorporated in each block to capture the multi-scale MRI information of each vertex and its neighborhood. This is fast and memory-efficient, which allows reconstructing a pial surface mesh with 150k vertices in one second. The performance is evaluated on the Human Connectome Project (HCP) dataset including T1-weighted MRI scans of 300 subjects. The experimental results demonstrate that PialNN reduces the geometric error of the predicted pial surface by \(30\%\) compared to state-of-the-art deep learning approaches. The codes are publicly available at https://github.com/m-qiang/PialNN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.humanconnectome.org/study/hcp-young-adult/data-releases

References

  1. Avants, B.B., Tustison, N., Song, G.: Advanced normalization tools (ANTs). Insight J. 2(365), 1–35 (2009)

    Google Scholar 

  2. Cruz, R.S., Lebrat, L., Bourgeat, P., Fookes, C., Fripp, J., Salvado, O.: DeepCSR: A 3D deep learning approach for cortical surface reconstruction. arXiv preprint arXiv:2010.11423 (2020)

  3. Dale, A.M., Fischl, B., Sereno, M.I.: Cortical surface-based analysis: I. segmentation and surface reconstruction. Neuroimage 9(2), 179–194 (1999)

    Google Scholar 

  4. Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3D object reconstruction from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 605–613 (2017)

    Google Scholar 

  5. Fischl, B.: FreeSurfer. Neuroimage 62(2), 774–781 (2012)

    Google Scholar 

  6. Fischl, B., Dale, A.M.: Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc. Natl. Acad. Sci. 97(20), 11050–11055 (2000)

    Article  Google Scholar 

  7. Gkioxari, G., Malik, J., Johnson, J.: Mesh R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9785–9795 (2019)

    Google Scholar 

  8. Glasser, M.F., et al.: The minimal preprocessing pipelines for the human connectome project. Neuroimage 80, 105–124 (2013)

    Article  Google Scholar 

  9. Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: A papier-mâché approach to learning 3D surface generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern rRecognition, pp. 216–224 (2018)

    Google Scholar 

  10. Henschel, L., Conjeti, S., Estrada, S., Diers, K., Fischl, B., Reuter, M.: FastSurfer - a fast and accurate deep learning based neuroimaging pipeline. NeuroImage 219, 117012 (2020)

    Google Scholar 

  11. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  12. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. ACM Siggraph Comput. Graph. 21(4), 163–169 (1987)

    Article  Google Scholar 

  13. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4460–4470 (2019)

    Google Scholar 

  14. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 165–174 (2019)

    Google Scholar 

  15. Shattuck, D.W., Leahy, R.M.: BrainSuite: an automated cortical surface identification tool. Med. Image Anal. 6(2), 129–142 (2002)

    Article  Google Scholar 

  16. Tóthová, K., et al.: Probabilistic 3D surface reconstruction from sparse MRI information. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 813–823. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_79

    Chapter  Google Scholar 

  17. Van Essen, D.C., et al.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)

    Google Scholar 

  18. Wang, N., et al.: Pixel2Mesh: 3D mesh model generation via image guided deformation. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  19. Wickramasinghe, U., Remelli, E., Knott, G., Fua, P.: Voxel2Mesh: 3D mesh model generation from volumetric data. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 299–308. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_30

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the President’s PhD Scholarships at Imperial College London.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, Q., Robinson, E.C., Kainz, B., Rueckert, D., Alansary, A. (2021). PialNN: A Fast Deep Learning Framework for Cortical Pial Surface Reconstruction. In: Abdulkadir, A., et al. Machine Learning in Clinical Neuroimaging. MLCN 2021. Lecture Notes in Computer Science(), vol 13001. Springer, Cham. https://doi.org/10.1007/978-3-030-87586-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87586-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87585-5

  • Online ISBN: 978-3-030-87586-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics