Skip to main content

Speed Breeding for Rapid Cycling of Crops for Stress Management and Global Food Security

  • Chapter
  • First Online:
Microbial Biocontrol: Food Security and Post Harvest Management

Abstract

The continuous expansion in human population together with increased distortion in agroclimatic conditions has diverted the attention of plant scientific communities along with agri-food sectors to ensure continuous production of good quality and quantity of foods and fuels using minimal resources. Confrontation of these future demands will require dissemination of upper hand techniques to accelerate slow improvement rate of development of substantial plant varieties through accelerating breeding programmes by reducing their generation time under controlled condition. The upper hand technique, viz. “Speed breeding”, is a method, which shortens the generation time of crop plants to expedite rapid generation advancements, i.e. up to four to five generations of crops in 1 year, which can help in the generation of valuable plant varieties and thus ensuring global food security. Speed breeding protocols have been developed for various crops such as wheat, chickpea, barley and pea which are conducted under environment-controlled growth chambers. In these crops, speed breeding has accelerated the development of improved varieties by conducting various studies such as genotyping by sequencing, mutant studies, transformation and phenotyping for trait of interest. However, limited information is available on the exploitation of this fast-track technique in the breeding programme to foster improved plant varieties in economically important crops. Here, in this chapter we have uncovered the hidden potential of speed breeding technique and its integration with other modern genomic tools such as CRISPR-Cas9, ZFN, TALENS coupled with epigenomics and next-generation sequencing for crop improvement and nutritional security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alahmad S, Dinglasan E, Leung KM, Riaz A, Derbal N, Voss-Fels KP, Able JA, Bassi FM, Christopher J, Hickey LT (2018) Speed breeding for multiple quantitative traits in durum wheat. Plant Methods 14(1):36

    Article  Google Scholar 

  • Baum M (2017) Crop breeding for the development of climate resilient crops: Approaches at ICARDA. Plant and Animal Genome XXV Conference

    Google Scholar 

  • Bekele D, Tesfaye K, Fikre A (2019) Recent developments in genomic selection for minor gene quantitative disease resistance plant breeding. J Plant Pathol Microbiol. https://doi.org/10.24105/2157-7471.10.478

  • Bermejo C, Gatti I, Cointry E (2016) In vitro embryo culture to shorten the breeding cycle in lentil (Lens culinaris Medik). Plant Cell Tissue Org 127(3):585–590

    Article  CAS  Google Scholar 

  • Blary A, Jenczewski E (2019) Manipulation of crossover frequency and distribution for plant breeding. Theor Appl Genet 132(3):575–592

    Article  CAS  Google Scholar 

  • Cao HX, Wang W, Le HT, Vu GT (2016) The power of CRISPR-Cas9-induced genome editing to speed up plant breeding. Int J Genomics. https://doi.org/10.1155/2016/5078796

  • Ceballos H, Jaramillo JJ, Salazar S et al (2017) Induction of flowering in cassava through grafting. J Plant Breed Crop Sci 9:19–29

    Article  CAS  Google Scholar 

  • Chiurugwi T, Kemp S, Powell W et al (2019) Speed breeding orphan crops. Theor Appl Genet 132:607–616. https://doi.org/10.1007/s00122-018-3202-7

    Article  PubMed  Google Scholar 

  • Clifton-Brown J, Hastings A, Mos M et al (2017) Progress in upscaling Miscanthus biomass production for the European bio-economy with seed-based hybrids. GCB Bioenergy. https://doi.org/10.1111/gcbb.12357

  • Collard BC, Beredo JC, Lenaerts B, Mendoza R, Santelices R, Lopena V, Verdeprado H, Raghavan C, Gregorio GB, Vial L, Demont M (2017) Revisiting rice breeding methods–evaluating the use of rapid generation advance (RGA) for routine rice breeding. Plant Prod Sci 20(4):337–352

    Article  Google Scholar 

  • Croser JS, Pazos-Navarro M, Bennett RG, Tschirren S, Edwards K, Erskine W, Creasy R, Ribalta FM (2016) Time to flowering of temperate pulses in vivo and generation turnover in vivo–in vitro of narrow-leaf lupin accelerated by low red to far-red ratio and high intensity in the far-red region. Plant Cell Tiss Org 127(3):591–599

    Article  CAS  Google Scholar 

  • Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, de los Campos G, Burgueño J, González-Camacho JM, Pérez-Elizalde S, Beyene Y, Dreisigacker S (2017) Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci 22(11):961–975

    Article  CAS  Google Scholar 

  • Gaur PM, Samineni S, Thudi M, Tripathi S, Sajja SB, Jayalakshmi V, Mannur DM, Vijayakumar AG, Ganga Rao NV, Ojiewo C, Fikre A (2018) Integrated breeding approaches for improving drought and heat adaptation in chickpea (Cicer arietinum L.). Plant Breed. https://doi.org/10.1111/pbr.12641

  • Ghosh S, Watson A, Gonzalez-Navarro OE, Ramirez-Gonzalez RH, Yanes L, Mendoza-Suárez M, Simmonds J, Wells R, Rayner T, Green P, Hafeez A (2018) Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat Protoc 13(12):2944

    Article  CAS  Google Scholar 

  • Gilliham M, Able JA, Roy SJ (2017) Translating knowledge about abiotic stress tolerance to breeding programmes. Plant J 90(5):898–917

    Article  CAS  Google Scholar 

  • Godwin ID, Rutkoski J, Varshney RK, Hickey LT (2019) Technological perspectives for plant breeding. Theor Appl Genet 132:555

    Article  Google Scholar 

  • Gowda CL, Samineni S (2016) Chickpea research and development: current status and future perspectives in the semi-arid tropics. Harnessing Chickpea Value Chain for Nutrition Security and Commercialization of Smallholder Agriculture in Africa, 1

    Google Scholar 

  • Hickey LT, German SE, Pereyra SA, Diaz JE, Ziems LA, Fowler RA, Platz GJ, Franckowiak JD, Dieters MJ (2017) Speed breeding for multiple disease resistance in barley. Euphytica 213(3):64

    Article  Google Scholar 

  • Hickey LT, Hafeez AN, Robinson H, Jackson SA, Leal-Bertioli SC, Tester M, Gao C, Godwin ID, Hayes BJ, Wulff BB (2019) Breeding crops to feed 10 billion. Nat Biotechnol:1

    Google Scholar 

  • Joshi DC, Sood S, Hosahatti R, Kant L, Pattanayak A, Kumar A, Yadav D, Stetter MG (2018) From zero to hero: the past, present and future of grain amaranth breeding. Theor Appl Genet 131(9):1807–1823

    Article  CAS  Google Scholar 

  • Khan MZ, Zaidi SSEA, Amin I, Mansoor S (2019) A CRISPR way for fast-forward crop domestication. Trends Plant Sci 24(4):293–296

    Article  CAS  Google Scholar 

  • Li H, Rasheed A, Hickey LT, He Z (2018) Fast-forwarding genetic gain. Trends Plant Sci 23(3):184–186

    Article  CAS  Google Scholar 

  • Liu H, Tessema BB, Jensen J, Cericola F, Andersen JR, Sørensen AC (2018) ADAM-plant: a software for stochastic simulations of plant breeding from molecular to phenotypic level and from simple selection to complex speed breeding programs. Front Plant Sci 9:1926

    Article  Google Scholar 

  • Mobini SH, Lulsdorf M, Warkentin TD, Vandenberg A (2015) Plant growth regulators improve in vitro flowering and rapid generation advancement in lentil and faba bean. Vitro Cell Dev Biol 51(1):71–79

    Article  CAS  Google Scholar 

  • Mobini SH, Lulsdorf M, Warkentin TD, Vandenberg A (2016) Low red: far-red light ratio causes faster in vitro flowering in lentil. Can J Plant Sci 96(5):908–918

    Article  CAS  Google Scholar 

  • Mobini SH, Warkentin TD (2016) A simple and efficient method of in vivo rapid generation technology in pea (Pisum sativum L.). In Vitro Cell Dev Biol-Plant 52(5):530–536

    Article  CAS  Google Scholar 

  • Morton MJ, Awlia M, Al-Tamimi N, Saade S, Pailles Y, Negrão S, Tester M (2019) Salt stress under the scalpel–dissecting the genetics of salt tolerance. Plant J 97(1):148–163

    Article  CAS  Google Scholar 

  • Mujjassim NE, Mallik M, Rathod NKK, Nitesh SD (2019) Cisgenesis and intragenesis a new tool for conventional plant breeding: a review. J Pharmacogn Phytochem 8(1):2485–2489

    CAS  Google Scholar 

  • Nadeem MA, Nawaz MA, Shahid MQ, Doğan Y, Comertpay G, Yıldız M, Hatipoğlu R, Ahmad F, Alsaleh A, Labhane N, Özkan H (2018) DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol Biotechnol Equip 32(2):261–285

    Article  CAS  Google Scholar 

  • Nagatoshi Y, Fujita Y (2018) Accelerating soybean breeding in a CO2-supplemented growth chamber. Plant Cell Physiol 60(1):77–84

    Article  Google Scholar 

  • O’Connor DJ, Wright GC, Dieters MJ et al (2013) Development and application of speed breeding technologies in a commercial peanut breeding program. Peanut Sci 40:107–114. https://doi.org/10.3146/ps12-12.1

    Article  Google Scholar 

  • Pazos-Navarro M, Castello M, Bennett RG, Nichols P, Croser J (2017) In vitro-assisted single-seed descent for breeding-cycle compression in subterranean clover (Trifolium subterraneum L.). Crop Pasture Sci 68(11):958–966

    Article  Google Scholar 

  • Prakash C, Sevanthi AM, Shanmugavadivel PS (2019) Use of QTLs in Developing Abiotic Stress Tolerance in Rice. In Advances in Rice Research for Abiotic Stress Tolerance Woodhead Publishing, pp. 869–893

    Google Scholar 

  • Rana MM, Takamatsu T, Baslam M, Kaneko K, Itoh K, Harada N, Sugiyama T, Ohnishi T, Kinoshita T, Takagi H, Mitsui T (2019) Salt tolerance improvement in rice through efficient SNP marker-assisted selection coupled with speed-breeding. Int J Mol Sci 20(10):2585

    Article  CAS  Google Scholar 

  • Rasheed A, Xia X (2019) From markers to genome-based breeding in wheat. Theor Appl Genet 132(3):767–784

    Article  CAS  Google Scholar 

  • Sánchez-Martín J, Keller B (2019) Contribution of recent technological advances to future resistance breeding. Theor Appl Genet 132(3):713–732

    Article  Google Scholar 

  • Schaart JG, van de Wiel CC, Lotz LA, Smulders MJ (2016) Opportunities for products of new plant breeding techniques. Trends Plant Sci 21(5):438–449

    Article  CAS  Google Scholar 

  • Scheben A, Edwards D (2018) Towards a more predictable plant breeding pipeline with CRISPR/Cas-induced allelic series to optimize quantitative and qualitative traits. Curr Opin Plant Biol 45:218–225

    Article  CAS  Google Scholar 

  • Shivakumar M, Nataraj V, Kumawat G, Rajesh V, Chandra S, Gupta S, Bhatia VS (2018) Speed breeding for Indian agriculture: a rapid method for development of new crop varieties. Curr Sci 115(7):1241

    Google Scholar 

  • Sysoeva MI, Markovskaya EF, Shibaeva TG (2010) Plants under continuous light: a review. Plant Stress 4(1):5–17

    Google Scholar 

  • Tadesse W, Bishaw Z, Assefa S (2018) Wheat production and breeding in sub-Saharan Africa: challenges and opportunities in the face of climate change. Int J Clim Chang STR. https://doi.org/10.1108/IJCCSM-02-2018-0015

  • Tanaka J, Hayashi T, Iwata H (2016) A practical, rapid generation-advancement system for rice breeding using simplified biotron breeding system. Breed Sci:15038

    Google Scholar 

  • Van Eeuwijk FA, Bustos-Korts D, Millet EJ, Boer MP, Kruijer W, Thompson A, Malosetti M, Iwata H, Quiroz R, Kuppe C, Muller O (2019) Modelling strategies for assessing and increasing the effectiveness of new phenotyping techniques in plant breeding. Plant Sci 282:23–39

    Article  Google Scholar 

  • van Nocker S, Gardiner SE (2014) Breeding better cultivars, faster: applications of new technologies for the rapid deployment of superior horticultural tree crops. Hortic Res 1:14022. https://doi.org/10.1038/hortres.2014.22

    Article  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Pandey MK, Bohra A, Singh VK, Thudi M, Saxena RK (2019) Toward the sequence-based breeding in legumes in the post-genome sequencing era. Theor Appl Genet 132(3):797–816

    Article  CAS  Google Scholar 

  • Venske E, dos Santos RS, Busanello C, Gustafson P, de Oliveira AC (2019) Bread wheat: a role model for plant domestication and breeding. Hereditas 156(1):16

    Article  Google Scholar 

  • Voss-Fels KP, Stahl A, Hickey LT (2019) Q&A: modern crop breeding for future food security. BMC Biol 17(1):18

    Article  Google Scholar 

  • Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey MD, Hatta MAM, Hinchliffe A, Steed A, Reynolds D, Adamski NM (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4(1):23

    Article  Google Scholar 

  • Wolter F, Schindele P, Puchta H (2019) Plant breeding at the speed of light: the power of CRISPR/Cas to generate directed genetic diversity at multiple sites. BMC Plant Biol 19(1):176

    Article  Google Scholar 

  • Yao Y, Zhang P, Liu H et al (2017) A fully in vitro protocol towards large scale production of recombinant inbred lines in wheat (Triticum aestivum L.). Plant Cell Tissue Organ Cult 128:655

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rai, A.C., Rai, K.K. (2022). Speed Breeding for Rapid Cycling of Crops for Stress Management and Global Food Security. In: Kumar, A. (eds) Microbial Biocontrol: Food Security and Post Harvest Management. Springer, Cham. https://doi.org/10.1007/978-3-030-87289-2_2

Download citation

Publish with us

Policies and ethics