Skip to main content

Joint Motion Correction and Super Resolution for Cardiac Segmentation via Latent Optimisation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

In cardiac magnetic resonance (CMR) imaging, a 3D high-resolution segmentation of the heart is essential for detailed description of its anatomical structures. However, due to the limit of acquisition duration and respiratory/cardiac motion, stacks of multi-slice 2D images are acquired in clinical routine. The segmentation of these images provides a low-resolution representation of cardiac anatomy, which may contain artefacts caused by motion. Here we propose a novel latent optimisation framework that jointly performs motion correction and super resolution for cardiac image segmentations. Given a low-resolution segmentation as input, the framework accounts for inter-slice motion in cardiac MR imaging and super-resolves the input into a high-resolution segmentation consistent with input. A multi-view loss is incorporated to leverage information from both short-axis view and long-axis view of cardiac imaging. To solve the inverse problem, iterative optimisation is performed in a latent space, which ensures the anatomical plausibility. This alleviates the need of paired low-resolution and high-resolution images for supervised learning. Experiments on two cardiac MR datasets show that the proposed framework achieves high performance, comparable to state-of-the-art super-resolution approaches and with better cross-domain generalisability and anatomical plausibility. The codes are available at https://github.com/shuowang26/SRHeart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anwar, S., Khan, S., Barnes, N.: A Deep journey into super-resolution: a survey. ACM Comput. Surv. 53(3), 1–34 (2020)

    Article  Google Scholar 

  2. Avendi, M., Kheradvar, A., Jafarkhani, H.: A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med. Image Anal. 30, 108–119 (2016)

    Article  Google Scholar 

  3. Bai, W., Sinclair, M., Tarroni, G., Oktay, O., et al.: Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. J. Cardiovasc. Magn. Reson. 20(1), 65 (2018)

    Article  Google Scholar 

  4. Bhatia, K.K., Price, A.N., Shi, W., Hajnal, J.V., Rueckert, D.: Super-resolution reconstruction of cardiac MRI using coupled dictionary learning. In: IEEE International Symposium on Biomedical Imaging (ISBI), pp. 947–950 (2014)

    Google Scholar 

  5. Bulat, A., Yang, J., Tzimiropoulos, G.: To learn image super-resolution, use a GAN to learn how to do image degradation first. In: Proceedings of the European conference on computer vision (ECCV), pp. 185–200 (2018)

    Google Scholar 

  6. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2015)

    Article  Google Scholar 

  7. Duan, J., Bello, G., Schlemper, J., Bai, W., et al.: Automatic 3D bi-ventricular segmentation of cardiac images by a shape-refined multi-task deep learning approach. IEEE Trans. Med. Imaging 38(9), 2151–2164 (2019)

    Article  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Larrazabal, A.J., Martínez, C., Glocker, B., Ferrante, E.: Post-DAE: anatomically plausible segmentation via post-processing with denoising autoencoders. IEEE Trans. Med. Imaging 39, 3813–3820 (2020)

    Article  Google Scholar 

  10. Law, M.H., Jain, A.K.: Incremental nonlinear dimensionality reduction by manifold learning. IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 377–391 (2006)

    Article  Google Scholar 

  11. Menon, S., Damian, A., Hu, S., Ravi, N., Rudin, C.: PULSE: self-supervised photo upsampling via latent space exploration of generative models. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  12. Odille, F., Bustin, A., Chen, B., Vuissoz, P.-A., Felblinger, J.: Motion-corrected, super-resolution reconstruction for high-resolution 3D cardiac cine MRI. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 435–442. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_52

    Chapter  Google Scholar 

  13. Oktay, O., et al.: Multi-input cardiac image super-resolution using convolutional neural networks. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 246–254. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_29

    Chapter  Google Scholar 

  14. Oktay, O., Ferrante, E., Kamnitsas, K., Heinrich, M., et al.: Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Trans. Med. Imaging 37(2), 384–395 (2017)

    Article  Google Scholar 

  15. Painchaud, N., Skandarani, Y., Judge, T., Bernard, O., et al.: Cardiac segmentation with strong anatomical guarantees. IEEE Trans. Med. Imaging 39(11), 3703–3713 (2020)

    Article  Google Scholar 

  16. Petersen, S.E., Matthews, P.M., Francis, J.M., Robson, M.D., et al.: UK Biobank’s cardiovascular magnetic resonance protocol. J. Cardiovasc. Magn. Reson. 18(1), 8 (2015)

    Article  Google Scholar 

  17. Qiu, Y., Wang, R., Tao, D., Cheng, J.: Embedded block residual network: a recursive restoration model for single-image super-resolution. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4180–4189 (2019)

    Google Scholar 

  18. Raya, S.P., Udupa, J.K.: Shape-based interpolation of multidimensional objects. IEEE Trans. Med. Imaging 9(1), 32–42 (1990)

    Article  Google Scholar 

  19. Tarroni, G., Bai, W., Oktay, O., Schuh, A., et al.: Large-scale quality control of cardiac imaging in population Studies: application to UK Biobank. Sci. Rep. 10(1), 1–11 (2020)

    Article  Google Scholar 

  20. Tarroni, G., Oktay, O., Bai, W., Schuh, A., et al.: Learning-based quality control for cardiac MR images. IEEE Trans. Med. Imaging 38(5), 1127–1138 (2018)

    Article  Google Scholar 

  21. Tezcan, K.C., Baumgartner, C.F., Luechinger, R., Pruessmann, K.P., Konukoglu, E.: MR image reconstruction using deep density priors. IEEE Trans. Med. Imaging 38(7), 1633–1642 (2018)

    Article  Google Scholar 

  22. Tong, T., Li, G., Liu, X., Gao, Q.: Image super-resolution using dense skip connections. In: IEEE International Conference on Computer Vision (ICCV), pp. 4799–4807 (2017)

    Google Scholar 

  23. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9446–9454 (2018)

    Google Scholar 

  24. Wang, S., et al.: Deep generative model-based quality control for cardiac MRI segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 88–97. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_9

    Chapter  Google Scholar 

  25. Wang, Z., Chen, J., Hoi, S.C.: Deep learning for image super-resolution: a survey. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  26. Yue, L., Shen, H., Li, J., Yuan, Q., et al.: Image super-resolution: the techniques, applications, and future. Signal Process. 128, 389–408 (2016)

    Article  Google Scholar 

  27. Zhang, Y., Li, K., Li, K., Wang, L., et al.: Image super-resolution using very deep residual channel attention networks. In: European Conference on Computer Vision (ECCV), pp. 286–301 (2018)

    Google Scholar 

  28. Zhu, B., Liu, J.Z., Cauley, S.F., Rosen, B.R., Rosen, M.S.: Image reconstruction by domain-transform manifold learning. Nature 555(7697), 487–492 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This research has been conducted using the UK Biobank Resource under Application Number 18545. The authors also acknowledge funding by EPSRC Programme (EP/P001009/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuo Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 250 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, S. et al. (2021). Joint Motion Correction and Super Resolution for Cardiac Segmentation via Latent Optimisation. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12903. Springer, Cham. https://doi.org/10.1007/978-3-030-87199-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87199-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87198-7

  • Online ISBN: 978-3-030-87199-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics