Skip to main content

Weakly-Supervised Universal Lesion Segmentation with Regional Level Set Loss

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Accurately segmenting a variety of clinically significant lesions from whole body computed tomography (CT) scans is a critical task on precision oncology imaging, denoted as universal lesion segmentation (ULS). Manual annotation is the current clinical practice, being highly time-consuming and inconsistent on tumor’s longitudinal assessment. Effectively training an automatic segmentation model is desirable but relies heavily on a large number of pixel-wise labelled data. Existing weakly-supervised segmentation approaches often struggle with regions nearby the lesion boundaries. In this paper, we present a novel weakly-supervised universal lesion segmentation method by building an attention enhanced model based on the High-Resolution Network (HRNet), named AHRNet, and propose a regional level set (RLS) loss for optimizing lesion boundary delineation. AHRNet provides advanced high-resolution deep image features by involving a decoder, dual-attention and scale attention mechanisms, which are crucial to performing accurate lesion segmentation. RLS can optimize the model reliably and effectively in a weakly-supervised fashion, forcing the segmentation close to lesion boundary. Extensive experimental results demonstrate that our method achieves the best performance on the publicly large-scale DeepLesion dataset and a hold-out test set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarwal, V., Tang, Y., Xiao, J., Summers, R.M.: Weakly-supervised lesion segmentation on CT scans using co-segmentation. In: Medical Imaging: Computer-Aided Diagnosis, vol. 11314, p. 113141J (2020)

    Google Scholar 

  2. Beaumont, H., et al.: Radiology workflow for RECIST assessment in clinical trials: can we reconcile time-efficiency and quality? Eur. J. Radiol. 118, 257–263 (2019)

    Article  Google Scholar 

  3. Cai, J., et al.: Accurate weakly-supervised deep lesion segmentation using large-scale clinical annotations: slice-propagated 3d mask generation from 2D RECIST. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 396–404. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_46

    Chapter  Google Scholar 

  4. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  Google Scholar 

  5. Chen, X., Williams, B.M., Vallabhaneni, S.R., Czanner, G., Williams, R., Zheng, Y.: Learning active contour models for medical image segmentation. In: CVPR, pp. 11632–11640 (2019)

    Google Scholar 

  6. Chlebus, G., Schenk, A., Moltz, J.H., van Ginneken, B., Hahn, H.K., Meine, H.: Automatic liver tumor segmentation in CT with fully convolutional neural networks and object-based postprocessing. Sci. Rep. 8(1), 1–7 (2018)

    Article  Google Scholar 

  7. Christ, P.F., et al.: Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks. arXiv preprint arXiv:1702.05970 (2017)

  8. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Li, F.: ImageNet: a large-scale hierarchical image database. In: CVPR, pp. 248–255 (2009)

    Google Scholar 

  9. Eisenhauer, E.A., et al.: New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45(2), 228–247 (2009)

    Google Scholar 

  10. Fu, J., et al.: Dual attention network for scene segmentation. In: CVPR, pp. 3146–3154 (2019)

    Google Scholar 

  11. Havaei, M., et al.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)

    Article  Google Scholar 

  12. Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. 42(8), 2011–2023 (2020)

    Article  Google Scholar 

  13. Isensee, F., et al.: nnU-Net: self-adapting framework for U-Net-based medical image segmentation. arXiv preprint arXiv:1809.10486 (2018)

  14. Kim, Y., Kim, S., Kim, T., Kim, C.: CNN-based semantic segmentation using level set loss. In: WACV, pp. 1752–1760 (2019)

    Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  16. Li, X., Chen, H., Qi, X., Dou, Q., Fu, C.W., Heng, P.A.: H-Denseunet: Hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans. Med. Imaging 37(12), 2663–2674 (2018)

    Article  Google Scholar 

  17. Nogues, I., et al.: Automatic lymph node cluster segmentation using holistically-nested neural networks and structured optimization in CT images. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 388–397. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_45

    Chapter  Google Scholar 

  18. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: NeurIPS, pp. 8024–8035 (2019)

    Google Scholar 

  19. Rahman, M.A., Wang, Y.: Optimizing intersection-over-union in deep neural networks for image segmentation. In: ISVC, pp. 234–244 (2016)

    Google Scholar 

  20. Raju, A., et al.: Co-heterogeneous and adaptive segmentation from multi-source and multi-phase CT imaging data: a study on pathological liver and lesion segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 448–465. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58592-1_27

    Chapter  Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Sung, H., et al.: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. (2021)

    Google Scholar 

  23. Tang, Y.B., Oh, S., Tang, Y.X., Xiao, J., Summers, R.M.: CT-realistic data augmentation using generative adversarial network for robust lymph node segmentation. In: SPIE Med. Imaging 10950, 109503V (2019)

    Google Scholar 

  24. Tang, Y., Harrison, A.P., Bagheri, M., Xiao, J., Summers, R.M.: Semi-automatic RECIST labeling on CT scans with cascaded convolutional neural networks. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 405–413. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_47

    Chapter  Google Scholar 

  25. Tang, Y., Tang, Y., Zhu, Y., Xiao, J., Summers, R.M.: E\(^2\)Net: an edge enhanced network for accurate liver and tumor segmentation on CT scans. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 512–522. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_50

    Chapter  Google Scholar 

  26. Tang, Y., et al.: Lesion segmentation and RECIST diameter prediction via click-driven attention and dual-path connection. arXiv preprint arXiv:2105.01828 (2021)

  27. Tang, Y., Yan, K., Xiao, J., Summers, R.M.: One click lesion RECIST measurement and segmentation on CT scans. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 573–583. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_56

    Chapter  Google Scholar 

  28. Wang, J., et al.: Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  29. Wang, S., et al.: Central focused convolutional neural networks: developing a data-driven model for lung nodule segmentation. Med. Image Anal. 40, 172–183 (2017)

    Article  Google Scholar 

  30. Yan, K., Wang, X., Lu, L., Summers, R.M.: DeepLesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning. J. Med. Imaging 5(3), 036501 (2018)

    Google Scholar 

  31. Zhang, D., Chen, B., Chong, J., Li, S.: Weakly-supervised teacher-student network for liver tumor segmentation from non-enhanced images. Med. Image Anal. 70, 102005 (2021)

    Google Scholar 

  32. Zhang, L., et al.: Robust pancreatic ductal adenocarcinoma segmentation with multi-institutional multi-phase partially-annotated CT scans. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 491–500. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_48

    Chapter  Google Scholar 

  33. Zhang, M., Dong, B., Li, Q.: Deep active contour network for medical image segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 321–331. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_32

    Chapter  Google Scholar 

  34. Zhou, B., Crawford, R., Dogdas, B., Goldmacher, G., Chen, A.: A progressively-trained scale-invariant and boundary-aware deep neural network for the automatic 3D segmentation of lung lesions. In: WACV, pp. 1–10. IEEE (2019)

    Google Scholar 

  35. Zhu, Z., et al.: Lymph node gross tumor volume detection and segmentation via distance-based gating using 3D CT/PET imaging in radiotherapy. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 753–762. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_73

    Chapter  Google Scholar 

  36. Zhu, Z., Xia, Y., Xie, L., Fishman, E.K., Yuille, A.L.: Multi-scale coarse-to-fine segmentation for screening pancreatic ductal adenocarcinoma. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 3–12. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_1

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, Y. et al. (2021). Weakly-Supervised Universal Lesion Segmentation with Regional Level Set Loss. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12902. Springer, Cham. https://doi.org/10.1007/978-3-030-87196-3_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87196-3_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87195-6

  • Online ISBN: 978-3-030-87196-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics