Skip to main content

Deep Active Contour Network for Medical Image Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12264))

Abstract

Image segmentation is vital to medical image analysis and clinical diagnosis. Recently, convolutional neural networks (CNNs) have achieved tremendous success in this task, however, it performs poorly at recognizing precise object boundary due to the information loss in the successive downsampling layers. To overcome this problem, we integrate an active contour model (convexified Chan-Vese model) into the CNN structure (DenseUNet), forming a new framework called deep active contour network (DACN). Instead of manual setting, DACN applies a CNN backbone to learn the initialization and parameters of active contour model (ACM) automatically. The proposed DACN leverages the advantage of ACM to detect object boundaries accurately, which can be trained in an end-to-end differential manner. The experimental results on two public datasets demonstrate the effectiveness of DACN, and the trimap experiment confirms the superior ability of DACN to obtain precise boundary delineation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, R., Bischof, L.: Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 16(6), 641–647 (1994)

    Article  Google Scholar 

  2. Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)

    Article  MathSciNet  Google Scholar 

  3. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  Google Scholar 

  4. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)

    Google Scholar 

  5. Chen, X., Williams, B.M., Vallabhaneni, S.R., Czanner, G., Williams, R., Zheng, Y.: Learning active contour models for medical image segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11632–11640 (2019)

    Google Scholar 

  6. Codella, N.C., et al.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172. IEEE (2018)

    Google Scholar 

  7. Gautam, S., Bhavsar, A., Sao, A.K., Harinarayan, K.: CNN based segmentation of nuclei in pap-smear images with selective pre-processing. In: Medical Imaging 2018: Digital Pathology, vol. 10581, p. 105810X. International Society for Optics and Photonics (2018)

    Google Scholar 

  8. Goldstein, T., Bresson, X., Osher, S.: Geometric applications of the split bregman method: segmentation and surface reconstruction. J. Sci. Comput. 45(1–3), 272–293 (2010). https://doi.org/10.1007/s10915-009-9331-z

    Article  MathSciNet  MATH  Google Scholar 

  9. Gur, S., Wolf, L., Golgher, L., Blinder, P.: Unsupervised microvascular image segmentation using an active contours mimicking neural network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 10722–10731 (2019)

    Google Scholar 

  10. Hatamizadeh, A., et al.: Deep active lesion segmentation. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 98–105. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_12

    Chapter  Google Scholar 

  11. Hu, P., Shuai, B., Liu, J., Wang, G.: Deep level sets for salient object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2300–2309 (2017)

    Google Scholar 

  12. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  13. Jantzen, J., Norup, J., Dounias, G., Bjerregaard, B.: Pap-smear benchmark data for pattern classification. In: Nature Inspired Smart Information Systems (NiSIS 2005), pp. 1–9 (2005)

    Google Scholar 

  14. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988). https://doi.org/10.1007/BF00133570

    Article  MATH  Google Scholar 

  15. Kaul, C., Pears, N., Manandhar, S.: Divided we stand: A novel residual group attention mechanism for medical image segmentation. arXiv preprint arXiv:1912.02079 (2019)

  16. Kim, B., Ye, J.C.: Mumford-shah loss functional for image segmentation with deep learning. IEEE Trans. Image Process. 29, 1856–1866 (2019)

    Article  MathSciNet  Google Scholar 

  17. Kim, Y., Kim, S., Kim, T., Kim, C.: Cnn-based semantic segmentation using level set loss. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1752–1760. IEEE (2019)

    Google Scholar 

  18. Kohli, P., Torr, P.H., et al.: Robust higher order potentials for enforcing label consistency. Int. J. Comput. Vis. 82(3), 302–324 (2009). https://doi.org/10.1007/s11263-008-0202-0

    Article  Google Scholar 

  19. Lankton, S., Tannenbaum, A.: Localizing region-based active contours. IEEE Trans. Image Process. 17(11), 2029–2039 (2008)

    Article  MathSciNet  Google Scholar 

  20. Lee, T.H., Fauzi, M.F.A., Komiya, R.: Segmentation of CT brain images using k-means and em clustering. In: 2008 Fifth International Conference on Computer Graphics, Imaging and Visualisation, pp. 339–344. IEEE (2008)

    Google Scholar 

  21. Li, J., Zhu, S., Bin, H.: Medical image segmentation techniques. Sheng wu yi xue gong cheng xue za zhi= Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi 23(4), 891–894 (2006)

    Google Scholar 

  22. Li, X., Chen, H., Qi, X., Dou, Q., Fu, C.W., Heng, P.A.: H-denseunet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans. Med. Imaging 37(12), 2663–2674 (2018)

    Article  Google Scholar 

  23. Marcos, D., Tuia, D., Kellenberger, B., Zhang, L., Bai, M., Liao, R., Urtasun, R.: Learning deep structured active contours end-to-end. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8877–8885 (2018)

    Google Scholar 

  24. Zhang, M., Zhao, J., Li, X., Zhang, L., Li, Q.: Ascnet: Adaptive-scale convolutional neural networks for multi-scale feature learning. arXiv preprint arXiv:1907.03241 (2019)

  25. Zhang, Y., Chung, A.C.S.: Deep supervision with additional labels for retinal vessel segmentation task. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 83–91. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_10

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanzheng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, M., Dong, B., Li, Q. (2020). Deep Active Contour Network for Medical Image Segmentation. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12264. Springer, Cham. https://doi.org/10.1007/978-3-030-59719-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59719-1_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59718-4

  • Online ISBN: 978-3-030-59719-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics