Skip to main content

A MATLAB Implementation of Spline Collocation Methods for Fractional Differential Equations

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

The present paper illustrates a MATLAB program for the solution of fractional differential equations. It is based on a spline collocation method on a graded mesh, introduced by Pedas and Tamme in [J. Comput. Appl. Math. 255, 216–230 (2014)]. This is the first program proposed to implement spline collocation methods for fractional differential equations, and it is one of the few algorithms available in the literature for these functional equations. An explicit formulation of the method is derived, and the computational kernel is a nonlinear system to be solved at each time step. Such system involves some fractional integrals, whose analytical expression is given; their computation requires the knowledge of the coefficients of some polynomials and the evaluation of some special functions. The method is written in a compact matrix form, to improve the efficiency of the MATLAB implementation. The overall algorithm is outlined and then the attention is focused on some routines, which are given. In particular, some MATLAB native routines are used to evaluate special functions and to compute the coefficients of some polynomials. The complete list of the input and output parameters is available. Finally, an example of usage of the MATLAB program on a test problem is provided and some numerical experiments are shown.

Authors are members of the INdAM Research group GNCS and are supported by GNCS-INDAM project. A. Cardone and Dajana Conte are supported by PRIN2017-MIUR project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blank, L.: Numerical treatment of differential equations of fractional order. Technical report, University of Manchester, Department of Mathematics (1996). Numerical Analysis Report

    Google Scholar 

  2. Brunner, H.: Collocation methods for Volterra integral and related functional differential equations. Cambridge Monographs on Applied and Computational Mathematics, vol. 15. Cambridge University Press, Cambridge (2004). https://doi.org/10.1017/CBO9780511543234

  3. Bueno-Orovio, A., Kay, D., Grau, V., Rodriguez, B., Burrage, K.: Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization. J. R. Soc. Interface 11(97), 20140352 (2014)

    Article  Google Scholar 

  4. Burrage, K., Cardone, A., D’Ambrosio, R., Paternoster, B.: Numerical solution of time fractional diffusion systems. Appl. Numer. Math. 116, 82–94 (2017). https://doi.org/10.1016/j.apnum.2017.02.004

    Article  MathSciNet  MATH  Google Scholar 

  5. Cao, W., Zeng, F., Zhang, Z., Karniadakis, G.E.: Implicit-explicit difference schemes for nonlinear fractional differential equations with nonsmooth solutions. SIAM J. Sci. Comput. 38(5), A3070–A3093 (2016). https://doi.org/10.1137/16M1070323

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao, W., Zhang, Z., Karniadakis, G.E.: Time-splitting schemes for fractional differential equations I: smooth solutions. SIAM J. Sci. Comput. 37(4), A1752–A1776 (2015). https://doi.org/10.1137/140996495

    Article  MathSciNet  MATH  Google Scholar 

  7. Cardone, A., Conte, D., Paternoster, B.: A family of multistep collocation methods for Volterra Integro-differential equations. AIP Conf. Proc. 1168, 358–361 (2009). https://doi.org/10.1063/1.3241469

  8. Cardone, A., Conte, D.: Multistep collocation methods for Volterra Integro-differential equations. Appl. Math. Comput. 221, 770–785 (2013). https://doi.org/10.1016/j.amc.2013.07.012

    Article  MathSciNet  MATH  Google Scholar 

  9. Cardone, A., Conte, D.: Stability analysis of spline collocation methods for fractional differential equations. Math. Comput. Simulat. 178, 501–514 (2020). https://doi.org/10.1016/j.matcom.2020.07.004

  10. Cardone, A., Conte, D., Paternoster, B.: Stability analysis of two-step spline collocation methods for fractional differential equations, submitted

    Google Scholar 

  11. Cardone, A., Conte, D., Paternoster, B.: Two-step collocation methods for fractional differential equations. Discrete Contin. Dyn. Syst. Ser. B 23(7), 2709–2725 (2018). https://doi.org/10.3934/dcdsb.2018088

    Article  MathSciNet  MATH  Google Scholar 

  12. Cardone, A., Conte, D., Paternoster, B.: Numerical treatment of fractional differential models. In: Abdel Wahab, M. (ed.) FFW 2020 2020. LNME, pp. 289–302. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-9893-7_21

    Chapter  Google Scholar 

  13. Conte, D., Paternoster, B.: Multistep collocation methods for Volterra Integral equations. Appl. Numer. Math. 59(8), 1721–1736 (2009). https://doi.org/10.1016/j.apnum.2009.01.001

    Article  MathSciNet  MATH  Google Scholar 

  14. Daftardar-Gejji, V., Jafari, H.: Adomian decomposition: a tool for solving a system of fractional differential equations. J. Math. Anal. Appl. 301(2), 508–518 (2005). https://doi.org/10.1016/j.jmaa.2004.07.039

    Article  MathSciNet  MATH  Google Scholar 

  15. D’Ambrosio, R., Paternoster, B.: Multivalue collocation methods free from order reduction. J. Comput. Appl. Math. 387, 112515 (2021). https://doi.org/10.1016/j.cam.2019.112515

  16. Diethelm, K.: The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics, vol. 2004. Springer, Berlin (2010)

    Google Scholar 

  17. Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Numer. Algorithms 36(1), 31–52 (2004). https://doi.org/10.1023/B:NUMA.0000027736.85078.be

  18. Garrappa, R.: Numerical solution of fractional differential equations: a survey and a software tutorial. Mathematics 6(2), 16 (2018). https://doi.org/10.3390/math6020016

    Article  MATH  Google Scholar 

  19. Garrappa, R.: Short Tutorial: Solving Fractional Differential Equations by Matlab Codes. Department of Mathematics University of Bari, Italy (2014)

    Google Scholar 

  20. Garrappa, R., Popolizio, M.: On accurate product integration rules for linear fractional differential equations. J. Comput. Appl. Math. 235(5), 1085–1097 (2011). https://doi.org/10.1016/j.cam.2010.07.008

    Article  MathSciNet  MATH  Google Scholar 

  21. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204. Elsevier Science B.V, Amsterdam (2006)

    Google Scholar 

  22. Li, X.: Numerical solution of fractional differential equations using cubic B-spline wavelet collocation method. Commun. Nonlinear Sci. Numer. Simul. 17(10), 3934–3946 (2012). https://doi.org/10.1016/j.cnsns.2012.02.009

    Article  MathSciNet  MATH  Google Scholar 

  23. Lubich, C.: Fractional linear multistep methods for Abel-Volterra integral equations of the second kind. Math. Comp. 45(172), 463–469 (1985). https://doi.org/10.2307/2008136

    Article  MathSciNet  MATH  Google Scholar 

  24. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 77 (2000). https://doi.org/10.1016/S0370-1573(00)00070-3

    Article  MathSciNet  MATH  Google Scholar 

  25. Mustapha, K., Abdallah, B., Furati, K.: A discontinuous Petrov-Galerkin method for time-fractional diffusion equations. SIAM J. Numer. Anal. 52(5), 2512–2529 (2014). https://doi.org/10.1137/140952107

    Article  MathSciNet  MATH  Google Scholar 

  26. Paternoster, B.: Phase-fitted collocation-based Runge-Kutta-Nystrom method. Appl. Numer. Math. 35(4), 339–355 (2000). https://doi.org/10.1016/S0168-9274(99)00143-9

    Article  MathSciNet  MATH  Google Scholar 

  27. Pedas, A., Tamme, E.: On the convergence of spline collocation methods for solving fractional differential equations. J. Comput. Appl. Math. 235(12), 3502–3514 (2011). https://doi.org/10.1016/j.cam.2010.10.054

    Article  MathSciNet  MATH  Google Scholar 

  28. Pedas, A., Tamme, E.: Spline collocation methods for linear multi-term fractional differential equations. J. Comput. Appl. Math. 236(2), 167–176 (2011). https://doi.org/10.1016/j.cam.2011.06.015

    Article  MathSciNet  MATH  Google Scholar 

  29. Pedas, A., Tamme, E.: Numerical solution of nonlinear fractional differential equations by spline collocation methods. J. Comput. Appl. Math. 255, 216–230 (2014). https://doi.org/10.1016/j.cam.2013.04.049

    Article  MathSciNet  MATH  Google Scholar 

  30. Pedas, A., Tamme, E.: Spline collocation for nonlinear fractional boundary value problems. Appl. Math. Comput. 244, 502–513 (2014). https://doi.org/10.1016/j.amc.2014.07.016

    Article  MathSciNet  MATH  Google Scholar 

  31. Petrás, I.: Fractional derivatives, fractional integrals, and fractional differential equations in MATLAB. In: Assi, A.H. (ed.) Engineering Education and Research Using MATLAB, Chapter 10. IntechOpen, Rijeka (2011). https://doi.org/10.5772/19412

  32. Podlubny, I.: Fractional differential equations, Mathematics in Science and Engineering, vol. 198. Academic Press Inc, San Diego, CA (1999). An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications

    Google Scholar 

  33. Sowa, M., Kawala-Janik, A., Bauer, W.: Fractional differential equation solvers in Octave/MATLAB. In: 2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR), pp. 628–633. IEEE (2018)

    Google Scholar 

  34. Wang, W., Chen, X., Ding, D., Lei, S.L.: Circulant preconditioning technique for barrier options pricing under fractional diffusion models. Int. J. Comput. Math. 92(12), 2596–2614 (2015). https://doi.org/10.1080/00207160.2015.1077948

    Article  MathSciNet  MATH  Google Scholar 

  35. Wei, S., Chen, W.: A MATLAB toolbox for fractional relaxation-oscillation equations. arXiv preprint arXiv:1302.3384 (2013)

  36. Yang, W., Chen, Z.: Fractional single-phase lag heat conduction and transient thermal fracture in cracked viscoelastic materials. Acta Mechanica 230(10), 3723–3740 (2019). https://doi.org/10.1007/s00707-019-02474-z

    Article  MathSciNet  MATH  Google Scholar 

  37. Zayernouri, M., Karniadakis, G.E.: Exponentially accurate spectral and spectral element methods for fractional ODEs. J. Comput. Phys. 257(part A), 460–480 (2014). https://doi.org/10.1016/j.jcp.2013.09.039

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelamaria Cardone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cardone, A., Conte, D., Paternoster, B. (2021). A MATLAB Implementation of Spline Collocation Methods for Fractional Differential Equations. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12949. Springer, Cham. https://doi.org/10.1007/978-3-030-86653-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86653-2_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86652-5

  • Online ISBN: 978-3-030-86653-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics