Skip to main content

Ecology of Fungal Food Spoilage

  • Chapter
  • First Online:
Fungi and Food Spoilage

Abstract

Food is not commonly regarded as an ecosystem, perhaps on the basis that it is not a “natural” system. Nevertheless an ecosystem it is and an important one, because food plants and the fungi that colonise their reproductive parts (seeds and fruit), have been co-evolving for millennia. The seed and nut caches of rodents have provided a niche for the development of storage fungi. Fallen fruit, as they go through the cycle of decay and desiccation, have provided substrates for a wide range of pathogenic and spoilage fungi also. Humans have aided and abetted the development of food spoilage fungi through the setting up of vast and varied food stores. It can be argued, indeed, that rapidly evolving organisms, such as haploid asexual fungi, are moving into niches created by man’s exploitation of certain types of plants as food. This chapter outlines the various parameters, including water activity, temperature and pH, that influence the growth of fungi in foods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrews, S. and Pitt, J.I. 1987. Further studies on the water relations of xerophilic fungi, including some halophiles. J. Gen. Microbiol. 133: 233–238.

    CAS  Google Scholar 

  • Bayne, H.G. and Michener, H.D. 1979. Heat resistance of Byssochlamys ascospores. Appl. Environ. Microbiol. 37: 449–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beuchat, L.R. 1981a. Synergistic effects of potassium sorbate and sodium benzoate on thermal inactivation of yeasts. J. Food Sci. 46: 771–777.

    Article  CAS  Google Scholar 

  • Beuchat, L.R. 1981b. Influence of potassium sorbate and sodium benzoate on heat inactivation of Aspergillus flavus, Penicillium puberulum and Geotrichum candidum. J. Food Prot. 44: 450–454.

    Article  CAS  PubMed  Google Scholar 

  • Beuchat, L.R. and Jones, W.K. 1978. Effects of food preservatives and antioxidants on colony formation by heated conidia of Aspergillus flavus. Acta Aliment. 7: 373–384.

    Google Scholar 

  • Beuchat, L.R. and Rice, S.L. 1979. Byssochlamys spp. and their importance in processed fruits. Adv. Food Res. 25: 237–288.

    Google Scholar 

  • Beuchat, L.R. and Toledo, R.T. 1977. Behaviour of Byssochlamys nivea ascospores in fruit syrups. Trans. Br. Mycol. Soc. 68: 65–71.

    Article  Google Scholar 

  • Brown, A.D. 1974. Microbial water relations: features of the intracellular composition of sugar tolerant yeasts. J. Bacteriol. 118: 769–777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brul, S. and Coote, P. 1999. Preservative agents in foods. Mode of action and microbial resistance mechanisms. Int. J. Food Microbiol. 50: 1–17.

    Article  CAS  PubMed  Google Scholar 

  • Curtis, P.J. 1969. Anaerobic growth of fungi. Trans. Br. Mycol. Soc. 53: 299–302.

    Article  Google Scholar 

  • Dallyn, H. and Everton, J.R. 1969. The xerophilic mould, Xeromyces bisporus, as a spoilage organism. J. Food Technol. 4: 399–403.

    Article  Google Scholar 

  • Duckworth, R.B., ed. 1975. Water Relations of Foods. London: Academic Press.

    Google Scholar 

  • Engel, G. and Teuber, M. 1978. Simple aid for the identification of Penicillium roqueforti Thom. Eur. J. Appl. Microbiol. Biotechnol. 6: 107–111.

    Article  Google Scholar 

  • Golding, N.S. 1945. The gas requirements of molds. IV. A preliminary interpretation of the growth rates of four common mold cultures on the basis of absorbed gases. J. Dairy Sci. 28: 737–750.

    Article  CAS  Google Scholar 

  • Hesseltine, C.W. et al. 1985. Anaerobic growth of molds isolated from fermentation starters used for foods in Asian countries. Mycologia 77: 390–400.

    Article  Google Scholar 

  • Hocking, A.D. 1990. Responses of fungi to modified atmospheres. In Fumigation and Controlled Atmosphere Storage of Grain, eds B.R. Champ, E. Highley and H.J. Banks. ACIAR Proceedings No 25. Canberra, Australia: Australian Centre for International Agricultural Research. pp 70–82.

    Google Scholar 

  • Hocking, A.D. and Pitt, J.I. 1979. Water relations of some Penicillium species at 25°C. Trans. Br. Mycol. Soc. 73: 141–145.

    Article  Google Scholar 

  • Iglesias, H.H. and Chirife, J. 1982. Handbook of Food Isotherms. New York: Academic Press.

    Google Scholar 

  • King, A.D. et al. 1969. Control of Byssochlamys and related heat-resistant fungi in grape products. Appl. Microbiol. 18: 166–173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotzekidou P. 1997. Heat resistance of Byssochlamys nivea, Byssochlamys fulva and Neosartorya fischeri isolated from canned tomato paste. J. Food Sci. 62: 410–412.

    Article  CAS  Google Scholar 

  • Leistner, L. and Rödel, W. 1976. Inhibition of microorganisms in foods by water activity. In Inhibition and Inactivation of Vegetative Microbes, eds. F.A. Skinner and W.B. Hugo. London: Academic Press. pp. 219–237.

    Google Scholar 

  • Miller, D.D. and Golding, N.S. 1949. The gas requirements of molds. V. The minimum oxygen requirements for normal growth and for germination of six mold cultures. J. Dairy Sci. 32: 101–110.

    Article  CAS  Google Scholar 

  • Olliver, M. and Rendle, T. 1934. A new problem in fruit preservation. Studies on Byssochlamys fulva and its effect on the tissues of processed fruit. J. Soc. Chem. Ind., London 53: 166–172.

    CAS  Google Scholar 

  • Onishi, N. 1963. Osmophilic yeasts. Adv. Food Res. 12: 53–94.

    Article  CAS  PubMed  Google Scholar 

  • Ormerod, J.G. 1967. The nutrition of the halophilic mold Sporendonema epizoum. Arch. Mikrobiol. 56: 31–39.

    Article  CAS  PubMed  Google Scholar 

  • Pitt, J.I. 1975. Xerophilic fungi and the spoilage of foods of plant origin. In Water Relations of Foods, ed. R.B. Duckworth. London: Academic Press. pp. 273–307.

    Google Scholar 

  • Pitt, J.I. 1979. The Genus Penicillium and Its Teleomorphic States Eupenicillium and Talaromyces. London: Academic Press.

    Google Scholar 

  • Pitt, J.I. and Christian, J.H.B. 1970. Heat resistance of xerophilic fungi based on microscopical assessment of spore survival. Appl. Microbiol. 20: 682–686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitt, J.I. and Hocking, A.D. 1977. Influence of solute and hydrogen ion concentration on the water relations of some xerophilic fungi. J. Gen. Microbiol. 101: 35–40.

    Article  CAS  PubMed  Google Scholar 

  • Pitt, J.I. and Hocking, A.D. 1997. Fungi and Food Spoilage. 2nd edn. Blackie Academic and Professional, London.

    Book  Google Scholar 

  • Put, H.M.C. et al. 1976. Heat resistance studies on yeast spp. causing spoilage in soft drinks. J. Appl. Bacteriol. 40: 135–152.

    Article  CAS  PubMed  Google Scholar 

  • Rajashekhara, E. et al. 2000. Modulation of thermal resistance of ascospores of Neosartorya fischeri by acidulants and preservatives in mango and grape juice. Food Microbiol. 17: 269–275.

    Article  CAS  Google Scholar 

  • Richardson, K.C. 1965. Incidence of Byssochlamys fulva in Queensland grown canned strawberries. Queensl. J. Agric. Anim. Sci. 22: 347–350.

    Google Scholar 

  • Rockland, L.B. and Beuchat, L.R., eds. 1987. Water Activity: Theory and Applications to Food. New York: Marcel Dekker.

    Google Scholar 

  • Scaramuzza N. and Berni, E. 2014. Heat resistance of Hamigera avellanea and Thermoascus crustaceus isolated from pasteurized acid products. Int. J. Food Microbiol. 168–169: 63–68.

    Article  PubMed  CAS  Google Scholar 

  • Scott, W.J. 1957. Water relations of food spoilage microorganisms. Adv. Food Res. 7: 83–127.

    Article  CAS  Google Scholar 

  • Stevenson, A. et al. 2015. Is there a common water-activity limit for the three domains of life? The ISME Journal 9, 1333–1351.

    Article  CAS  PubMed  Google Scholar 

  • Stevenson, A. et al. 2017. Aspergillus penicillioides differentiation and cell division at 0.585 water activity. Environ. Microbiol. 19: 687–697.

    Google Scholar 

  • Stolk, A.C. and Dakin, J.C. 1966. Moniliella, a new genus of Moniliales. Antonie van Leeuwenhoek 32: 399–409.

    Google Scholar 

  • Stotzky, G. and Goos, R.D. 1965. Effect of high CO2 and low O2 tensions on the soil microbiota. Can. J. Microbiol. 11: 853–868.

    Article  CAS  PubMed  Google Scholar 

  • Stratford, M. and Anslow, P.A. 1998. Evidence that sorbic acid does not inhibit yeast as a classic ‘weak acid’ preservative. Lett. Appl. Microbiol. 27: 203–206.

    Article  CAS  PubMed  Google Scholar 

  • Stratford, M. and Lambert, R.J.W. 1999. Weak-acid preservatives: mechanisms of adaptation and resistance by yeasts. Food Aust. 51: 26–29.

    Google Scholar 

  • Stratford, M. et al. 2013. Weak-acid preservatives: pH and proton movements in the yeast Saccharomyces cerevisiae. Int. J. Food Microbiol. 161: 164–171.

    Article  CAS  PubMed  Google Scholar 

  • Suhr, K.I. and Nielsen, P.V. 2004. Effect of weak acid preservatives on growth of bakery product spoilage fungi at different water activities and pH values. Int. J. Food Microbiol. 95: 67–78.

    Article  CAS  PubMed  Google Scholar 

  • Taniwaki, M.H. 1995. Growth and mycotoxin production by fungi under modified atmospheres. Ph.D. thesis. Kensington, N.S.W.: University of New South Wales.

    Google Scholar 

  • Taniwaki, M.H. et al. 2001a. Growth of fungi and mycotoxin production on cheese under modified atmospheres. Int. J. Food Microbiol. 68: 125–133.

    Article  CAS  PubMed  Google Scholar 

  • Taniwaki, M.H. et al. 2009. Growth and mycotoxin production by food spoilage fungi under high carbon dioxide and low oxygen atmospheres. Int. J. Food Microbiol. 132: 100–108.

    Article  CAS  PubMed  Google Scholar 

  • Timmermann, E.O. et al. 2001. Water sorption isotherms of foods and foodstuffs: BET or GAB parameters? J. Food Eng. 48: 19–31.

    Article  Google Scholar 

  • Tranquillini, R. et al. 2017. Occurrence and ecological distribution of heat resistant moulds spores (HRMS) in raw materials used by food industry and thermal characterization of two Talaromyces isolates. Int. J. Food Microbiol. 242: 116–123.

    Article  PubMed  Google Scholar 

  • Troller, J.A. and Christian, J.H.B. 1978. Water Activity and Food. New York: Academic Press.

    Google Scholar 

  • Von Schelhorn, M. 1950. Untersuchungen über den Verberb wasserarmer Lebensmittel durch osmophile Mikroorganismen. I. Verberb von Lebensmittel durch osmophile Hefen. Z. Lebensm.-Unters. Forsch. 91: 117–124.

    Article  CAS  PubMed  Google Scholar 

  • Warth, A.D. 1977. Mechanism of resistance of Saccharomyces bailii to benzoic, sorbic and other weak acids used as food preservatives. J. Appl. Bacteriol. 43: 215–230.

    Article  CAS  Google Scholar 

  • Warth, A.D. 1991. Mechanism of action of benzoic acid on Zygosaccharomyces bailii: effects on glycolytic metabolite levels, energy production, and intracellular pH. Appl. Environ. Microbiol. 57: 3410–3414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler, K.A. et al. 1988. Influence of temperature on the water relations of Polypaecilum pisce and Basipetospora halophila, two halophilic xerophiles. J. Gen. Microbiol. 134: 2255–2260.

    Google Scholar 

  • Wheeler, K.A. et al. 1991. Influence of pH on the growth of some toxigenic species of Aspergillus, Penicillium and Fusarium. Int. J. Food Microbiol. 12: 141–150.

    Article  CAS  PubMed  Google Scholar 

  • Yates, A.R. et al. 1967. Growth of Byssochlamys nivea in various carbon dioxide atmospheres. Can. J. Microbiol. 13: 1120–1123.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pitt, J.I., Hocking, A.D. (2022). Ecology of Fungal Food Spoilage. In: Fungi and Food Spoilage. Springer, Cham. https://doi.org/10.1007/978-3-030-85640-3_2

Download citation

Publish with us

Policies and ethics