Skip to main content
Log in

Enhanced iturin A production by Bacillus subtilis and its effect on suppression of the plant pathogen Rhizoctonia solani

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Enhanced production of the antibiotic iturin A by Bacillus subtilis RB14-CS reached 4.4 g L−1 in SM medium containing soybean meal and maltose, which was 16-fold and 2.2-fold higher than that in original and modified number 3S media, respectively. When various volumes of RB14-CS cultures grown in SM medium were applied to pot tests of tomato damping-off caused by Rhizoctonia solani, damping-off was dose-dependently suppressed by the cultures. Suppression by SM-grown cultures was significantly more effective than that by cultures grown in original or modified number 3S media. The iturin A concentrations in soil decreased to undetectable levels after 17 days of cultivation in pot tests, indicating that iturin A has a low persistence in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akpa E, Jacques P, Wathelet B, Paquot M, Fucks R, Budzikiewicz H, Thonart P (2001) Influence of culture conditions on lipopeptide production by Bacillus subtilis. Appl Biochem Biotechnol 91:551–561

    Article  Google Scholar 

  • Asaka O, Shoda M (1996) Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol 62:4081–4085

    Article  CAS  Google Scholar 

  • Carrol H, Moënne-Loccoz Y, Dowling DN, O’gara F (1995) Mutational disruption of the biosynthesis genes coding for the antifungal metabolite 2,4-diacetylphloroglucinol does not influence the ecological fitness of Pseudomonas fluorescens F113 in the rhizosphere of sugar beets. Appl Environ Microbiol 61:3002–3007

    Article  Google Scholar 

  • Cook RJ (1990) Twenty-five years of progress towards biological control. In: Hornby D (ed) Biological control of soil-borne plant pathogens. CAB International, Wallingford, pp 1–14

    Google Scholar 

  • Gutterson N (1990) Microbial fungicides: recent approaches to elucidating mechanisms. Crit Rev Biotechnol 10:69–91

    Article  Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  Google Scholar 

  • Hiraoka H, Ano T, Shoda M (1992a) Molecular cloning of a gene responsible for the biosynthesis of the lipopeptide antibiotics iturin and surfactin. J Ferment Bioeng 74:323–326

    Article  CAS  Google Scholar 

  • Hiraoka H, Asaka O, Ano T, Shoda M (1992b) Characteristics of Bacillus subtilis RB14, coproducer of peptide antibiotics iturin A and surfactin. J Gen Appl Microbiol 38:635–640

    Article  CAS  Google Scholar 

  • Huang CC, Ano T, Shoda M (1993) Nucleotide sequence and characteristics of the gene, lpa-14, responsible for biosynthesis of the lipopeptide antibiotics iturin A and surfactin from Bacillus subtilis RB14. J Ferment Bioeng 76:445–450

    Article  CAS  Google Scholar 

  • Katayama A, Hirai M, Shoda M, Kubota H (1986) Factors affecting the stabilization period of sewage sludge in soil with reference to the gel chromatographic pattern. Soil Sci Plant Nutr 32:383–395

    Article  CAS  Google Scholar 

  • Kondoh M, Hirai M, Shoda M (2001) Integrated biological and chemical control of damping-off caused by Rhizoctonia solani with Bacillus subtilis RB14-C and Flutolanil. J Biosci Bioeng 91:173–177

    Article  CAS  Google Scholar 

  • Kraus J, Loper JE (1995) Characterization of a genomic region required for production of the antibiotics pyoluteorin by the biological control agent Pseudomonas fluorescens Pf-5. Appl Environ Microbiol 61:849–854

    Article  CAS  Google Scholar 

  • Krebs B, Höding B, Kübart SM, Workie A, Junge H, Schmiedeknecht G, Groach P, Bochow H, Heves M (1998) Use of Bacillus subtilis as biocontrol agent. 1. Activities and characterization of Bacillus subtilis strains. J Plant Dis Prot 105:181–197

    Google Scholar 

  • Leclere V, Bechet M, Adam A, Guez JS, Wathelet B, Ongena M, Thonart P, Gancel F, Chollet-Imbert M, Jacques P (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584

    Article  CAS  Google Scholar 

  • Leifert C, Li H, Chidburee S, Hampson S, Workman S, Sigee D, Epton HA, Harbour A (1995) Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. J Appl Bacteriol 78:97–108

    Article  CAS  Google Scholar 

  • Maget-Dana R, Peypoux F (1994) Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology 87:151–174

    Article  CAS  Google Scholar 

  • McCarter SM (1991) Rhizoctonia diseases. In: Jones JB, Jones JP, Stall RE, Zitter TA (eds) Compendium of tomato diseases. APS Press, St. Paul, pp 21–22

    Google Scholar 

  • Ohno A, Ano T, Shoda M (1993) Production of antifungal peptide antibiotics, iturin by Bacillus subtilis NB22 in a solid state fermentation. J Ferment Bioeng 75:23–27

    Article  CAS  Google Scholar 

  • Ongena M, Duby F, Jourdan E, Beaudry T, Jadin V, Dommes J, Thonart P (2005) Bacillus subtilis M4 decreases plant susceptibility towards fungal pathogens by increasing host resistance associated with differential gene expression. Appl Microbiol Biotechnol 67:692–698

    Article  CAS  Google Scholar 

  • Phae CG, Shoda M, Kubota H (1990) Suppressive effect of Bacillus subtilis and its products on phytopathogenic microorganisms. J Ferment Bioeng 69:1–7

    Article  CAS  Google Scholar 

  • Phae CG, Shoda M, Kita N, Nakano M, Ushiyama K (1992) Biological control of crown and root rot and bacterial wilt of tomato by Bacillus subtilis. NB22 Ann Phytopathol Soc Jpn 58:329–339

    Article  Google Scholar 

  • Reddy MS, Rahe JE (1989) Growth effects associated with seed bacterization not correlated with populations of Bacillus subtilis inoculant in onion seedling rhizospheres. Soil Biol Biochem 21:373–378

    Article  Google Scholar 

  • Ryder MH, Yan Z, Terrace TE, Rovira AD, Tang W, Correll RL (1999) Use of Bacillus strains isolated in China to suppress take-all and rhizoctonia root rot, and promote seedling growth of glasshouse-grown wheat in Australian soils. Soil Biol Biochem 31:19–29

    Article  CAS  Google Scholar 

  • Safiyazov JS, Mannanov RN, Sattarova RK (1995) The use of bacterial antagonists for the control of cotton diseases. Field Crop Res 43:51–54

    Article  Google Scholar 

  • Sailaja PR, Podile AR, Reddanna P (1997) Biocontrol strain of Bacillus subtilis AF 1 rapidly induces lipoxygenase in groundnut (Arachis Hypogaea L.) compared to crown root pathogen Aspergillus niger. Eur J Plant Pathol 104:125–132

    Article  Google Scholar 

  • Shoda M (2000) Bacterial control of plant diseases. J Biosci Bioeng 89:515–521

    Article  CAS  Google Scholar 

  • Stein T (2005) Bacillus subtilis antibiotics: structure, syntheses and specific functions. Mol Microbiol 56:845–857

    Article  CAS  Google Scholar 

  • Szczech M, Shoda M (2004) Biocontrol of Rhizoctonia damping-off of tomato by Bacillus subtilis combined with Burkholderia cepacia. J Phytopathol 152:549–556

    Article  Google Scholar 

  • Tokuda Y, Ano T, Shoda M (1995) Survival of Bacillus subtilis NB22 and its transformant in soil. Appl Soil Ecol 2:85–94

    Article  Google Scholar 

  • Touré Y, Ongena M, Jacques P, Guiro A, Thonart P (2004) Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J Appl Microbiol 96:1151–1160

    Article  Google Scholar 

  • Tsuge K, Ano T, Hirai M, Nakamura Y, Shoda M (1999) The genes, degQ, pps and lpa-8 (sfp) are responsible for conversion of Bacillus subtilis strain 168 to plipastatin production. Antimicrob Agents Chemother 43:2183–2192

    Article  CAS  Google Scholar 

  • Tsuge K, Akiyama T, Shoda M (2001) Cloning, sequencing and characterization of iturin A operon. J Bacteriol 183:6265–6273

    Article  CAS  Google Scholar 

  • Ushiyama K, Nishimura J, Aono N (1987) Damping-off of feather cockscomb (Celosia argentea L. var. cristata O. Kuntze) caused by Rhizoctonia solani Kuhn. Bull Kanagawa Hortic Exp Stn 34:33–37

    Google Scholar 

  • Walsh UF, Morrissey JP, O’Gara F (2001) Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr Opin Biotechnol 12:289–295

    Article  CAS  Google Scholar 

  • Weller DM (1988) Biological control of soil-borne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407

    Article  Google Scholar 

  • Zheng XY, Sinclair JB (2000) The effects of traits of Bacillus megaterium on seed and root colonization and their correlation with the suppression of Rhizoctonia root rot of soybean. BioControl 45:223–243

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shoda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizumoto, S., Hirai, M. & Shoda, M. Enhanced iturin A production by Bacillus subtilis and its effect on suppression of the plant pathogen Rhizoctonia solani . Appl Microbiol Biotechnol 75, 1267–1274 (2007). https://doi.org/10.1007/s00253-007-0973-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-0973-1

Keywords

Navigation