Skip to main content

Monoamine Oxidase, Obesity and Related Comorbidities: Discovering Bonds

  • Chapter
  • First Online:
Cellular and Biochemical Mechanisms of Obesity

Abstract

Obesity together with diabetes represent nowadays the largest epidemic in human history as well as the heaviest economic burden worldwide. Both conditions are associated with high rates of morbidity and mortality largely due to the association of cardiovascular comorbidities. The current understanding of cardiometabolic pathologies recognize chronic oxidative stress and low-grade inflammation as major pathomechanisms in both adipose tissue and cardiovascular system. The sources of reactive oxygen species (ROS) and the factors enabling the perpetuation of systemic inflammation are far from being elucidated. In the past decade monoamine oxidases (MAO), enzymes at the outer mitochondrial membrane with 2 isoforms, A and B, have emerged as important contributors to the ROS-induced endothelial dysfunction and cardiac injury and more recently, to the dysfunctional adipose tissue. The aim of the present chapter is to summarize information about MAO contribution to obesity and related comorbidities in light of the underlying pathomechanisms and to highlight the potential of MAO inhibitors as candidate molecules for drug repurposing in cardiometabolic pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Organization WH (2020) Obesity and overweight. Fact sheet. https://www.whoint/news-room/fact-sheets/detail/obesity-and-overweight. Accessed 10 2020

  2. Federation ID (2020) IDF diabetes Atlas, 9th edn. International Diabetes Federation, Brussels, Belgium. https://www.diabetesatlasorg/en/. Accessed 11 Nov 2020

  3. Cho NH, Shaw JE, Karuranga S et al (2018) IDF diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 138:271–281

    Article  CAS  PubMed  Google Scholar 

  4. Popa S, Moţa M, Popa A et al (2016) Prevalence of overweight/obesity, abdominal obesity and metabolic syndrome and atypical cardiometabolic phenotypes in the adult Romanian population: PREDATORR study. J Endocrinol Invest 39(9):1045–1053

    Article  CAS  PubMed  Google Scholar 

  5. Benjamin EJ, Muntner P, Alonso A et al (2019) Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation 139(10):e56–e528

    Article  PubMed  Google Scholar 

  6. Khan SS, Ning H, Wilkins JT et al (2018) Association of body mass index with lifetime risk of cardiovascular disease and compression of morbidity. JAMA Cardiol 3(4):280–287

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fruhbeck G, Busetto L, Dicker D et al (2019) The ABCD of obesity: an EASO position statement on a diagnostic term with clinical and scientific implications. Obes Facts 12(2):131–136

    Article  PubMed  PubMed Central  Google Scholar 

  8. Shah RV, Murthy VL, Abbasi SA et al (2014) Visceral adiposity and the risk of metabolic syndrome across body mass index: the MESA Study. JACC Cardiovasc Imaging 7(12):1221–1235

    Article  PubMed  PubMed Central  Google Scholar 

  9. Goossens GH (2017) The metabolic phenotype in obesity: fat mass, body fat distribution, and adipose tissue function. Obes Facts 10(3):207–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rallidis LS, Baroutsi K, Zolindaki M et al (2014) Visceral adipose tissue is a better predictor of subclinical carotid atherosclerosis compared with waist circumference. Ultrasound Med Biol 40(6):1083–1088

    Article  PubMed  Google Scholar 

  11. Abbasi SA, Hundley WG, Bluemke DA et al (2015) Visceral adiposity and left ventricular remodeling: the Multi-Ethnic Study of Atherosclerosis. Nutr Metab Cardiovasc Dis 25(7):667–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Neeland IJ, Poirier P, Despres JP (2018) Cardiovascular and metabolic heterogeneity of obesity: clinical challenges and implications for management. Circulation 137(13):1391–1406

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gomez-Hernandez A, Beneit N, Diaz-Castroverde S, Escribano O (2016) Differential role of adipose tissues in obesity and related metabolic and vascular complications. Int J Endocrinol 1216783

    Google Scholar 

  14. Sies H, Berndt C, Jones DP (2017) Oxidative stress. Annu Rev Biochem 86:715–748

    Article  CAS  PubMed  Google Scholar 

  15. Sies H (2017) Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol 11:613–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ursini F, Maiorino M, Forman HJ (2016) Redox homeostasis: the Golden Mean of healthy living. Redox Biol 8:205–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sturza A, Olariu S, Ionica M et al (2019) Monoamine oxidase is a source of oxidative stress in obese patients with chronic inflammation. Can J Physiol Pharmacol 97(9):844–849

    Article  CAS  PubMed  Google Scholar 

  18. Hauck AK, Huang Y, Hertzel AV, Bernlohr DA (2019) Adipose oxidative stress and protein carbonylation. J Biol Chem 294(4):1083–1088

    Article  CAS  PubMed  Google Scholar 

  19. Muntean DM, Sturza A, Danila MD et al (2016) The role of mitochondrial reactive oxygen species in cardiovascular injury and protective strategies. Oxid Med Cell Longev 8254942

    Google Scholar 

  20. Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94(3):909–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417(1):1–13

    Article  CAS  PubMed  Google Scholar 

  22. Brand MD (2016) Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med 100:14–31

    Article  CAS  PubMed  Google Scholar 

  23. Murphy E, Ardehali H, Balaban RS et al (2016) Mitochondrial function, biology, and role in disease: a scientific statement from the American Heart Association. Circ Res 118(12):1960–1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McMurray F, Patten DA, Harper ME (2016) Reactive oxygen species and oxidative stress in obesity-recent findings and empirical approaches. Obesity 24(11):2301–2310

    Article  CAS  PubMed  Google Scholar 

  25. Woo CY, Jang JE, Lee SE et al (2019) Mitochondrial dysfunction in adipocytes as a primary cause of adipose tissue inflammation. Diabetes Metab J 43(3):247–256

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hare ML (1928) Tyramine oxidase: a new enzyme system in liver. Biochem J 22(4):968–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bortolato M, Chen K, Shih JC (2008) Monoamine oxidase inactivation: from pathophysiology to therapeutics. Adv Drug Deliv Rev 60(13–14):1527–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Edmondson DE (2014) Hydrogen peroxide produced by mitochondrial monoamine oxidase catalysis: biological implications. Curr Pharm Des 20(2):155–160

    Article  CAS  PubMed  Google Scholar 

  29. Youdim MBH (2018) Monoamine oxidase inhibitors, and iron chelators in depressive illness and neurodegenerative diseases. J Neural Transm (Vienna) 125(11):1719–1733

    Article  CAS  Google Scholar 

  30. Song MS, Matveychuk D, MacKenzie EM et al (2013) An update on amine oxidase inhibitors: multifaceted drugs. Prog Neuropsychopharmacol Biol Psychiatry 44:118–124

    Article  CAS  PubMed  Google Scholar 

  31. Tipton KF (2018) 90 years of monoamine oxidase: some progress and some confusion. J Neural Transm (Vienna) 125(11):1519–1551

    Article  CAS  Google Scholar 

  32. Sturza A, Popoiu CM, Ionica M et al (2019) Monoamine oxidase-related vascular oxidative stress in diseases associated with inflammatory burden. Oxid Med Cell Longev 8954201

    Google Scholar 

  33. Youdim MB, Edmondson D, Tipton KF (2006) The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 7(4):295–309

    Article  CAS  PubMed  Google Scholar 

  34. Deshwal S, Di Sante M, Di Lisa F, Kaludercic N (2017) Emerging role of monoamine oxidase as a therapeutic target for cardiovascular disease. Curr Opin Pharmacol 33:64–69

    Article  CAS  PubMed  Google Scholar 

  35. Duicu OM, Lighezan R, Sturza A et al (2016) Assessment of mitochondrial dysfunction and monoamine oxidase contribution to oxidative stress in human diabetic hearts. Oxid Med Cell Longev 8470394

    Google Scholar 

  36. Kaludercic N, Carpi A, Menabò R et al (2011) Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. Biochim Biophys Acta 1813(7):1323–1332

    Article  CAS  PubMed  Google Scholar 

  37. Kaludercic N, Mialet-Perez J, Paolocci N et al (2014) Monoamine oxidases as sources of oxidants in the heart. J Mol Cell Cardiol 73:34–42

    Article  CAS  PubMed  Google Scholar 

  38. Kaludercic N, Carpi A, Nagayama T et al (2014) Monoamine oxidase B prompts mitochondrial and cardiac dysfunction in pressure overloaded hearts. Antioxid Redox Signal 20(2):267–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bianchi P, Kunduzova O, Masini E et al (2005) Oxidative stress by monoamine oxidase mediates receptor-independent cardiomyocyte apoptosis by serotonin and postischemic myocardial injury. Circulation 112(21):3297–3305

    Article  CAS  PubMed  Google Scholar 

  40. Nagy CT, Koncsos G, Varga ZV et al (2018) Selegiline reduces adiposity induced by high-fat, high-sucrose diet in male rats. Br J Pharmacol 175(18):3713–3726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sturza A, Leisegang MS, Babelova A et al (2013) Monoamine oxidases are mediators of endothelial dysfunction in the mouse aorta. Hypertension 62(1):140–146

    Article  CAS  PubMed  Google Scholar 

  42. Sturza A, Mirica SN, Duicu O et al (2013) Monoamine oxidase—a inhibition reverses endothelial dysfunction in hypertensive rat aortic rings. Rev Med Chir Soc Med Nat Iasi 117(1):165–171

    CAS  PubMed  Google Scholar 

  43. Poon CC, Seto SW, Au AL et al (2010) Mitochondrial monoamine oxidase-A-mediated hydrogen peroxide generation enhances 5-hydroxytryptamine-induced contraction of rat basilar artery. Br J Pharmacol 161(5):1086–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sumners C, Shalit SL, Kalberg CJ, Raizada MK (1987) Norepinephrine metabolism in neuronal cultures is increased by angiotensin II. Am J Physiol 252(6 Pt 1):C650–C656

    Article  CAS  PubMed  Google Scholar 

  45. Manni ME, Zazzeri M, Musilli C et al (2013) Exposure of cardiomyocytes to angiotensin II induces over-activation of monoamine oxidase type A: implications in heart failure. Eur J Pharmacol 718(1–3):271–276

    Article  CAS  PubMed  Google Scholar 

  46. Raasch W, Bartels T, Gieselberg A et al (2002) Angiotensin I-converting enzyme inhibition increases cardiac catecholamine content and reduces monoamine oxidase activity via an angiotensin type 1 receptor-mediated mechanism. J Pharmacol Exp Ther 300(2):428–434

    Article  CAS  PubMed  Google Scholar 

  47. Sturza A, Noveanu L, Duicu O, Muntean D (2014) P172Monoamine oxidase inhibition corrects endothelial dysfunction in experimental diabetes. Cardiovasc Res 103(suppl 1):S30-S

    Google Scholar 

  48. Sturza A, Duicu OM, Vaduva A et al (2015) Monoamine oxidases are novel sources of cardiovascular oxidative stress in experimental diabetes. Can J Physiol Pharmacol 93(7):555–561

    Article  CAS  PubMed  Google Scholar 

  49. Sun X-Q, Peters E, Schalij I et al (2018) The effect of Monoamine oxidase A inhibition on experimentally induced pulmonary arterial hypertension. Eur Respir J 52(suppl 62):PA3072

    Google Scholar 

  50. Thomas T (2000) Monoamine oxidase-B inhibitors in the treatment of Alzheimer’s disease. Neurobiol Aging 21(2):343–348

    Article  CAS  PubMed  Google Scholar 

  51. Lighezan R, Sturza A, Duicu OM et al (2016) Monoamine oxidase inhibition improves vascular function in mammary arteries from nondiabetic and diabetic patients with coronary heart disease. Can J Physiol Pharmacol 94(10):1040–1047

    Article  CAS  PubMed  Google Scholar 

  52. Utu D, Pantea S, Duicu OM et al (2017) Contribution of monoamine oxidases to vascular oxidative stress in patients with end-stage renal disease requiring hemodialysis. Can J Physiol Pharmacol 95(11):1383–1388

    Article  CAS  PubMed  Google Scholar 

  53. Enrique-Tarancón G, Marti L, Morin N et al (1998) Role of semicarbazide-sensitive amine oxidase on glucose transport and GLUT4 recruitment to the cell surface in adipose cells. J Biol Chem 273(14):8025–8032

    Article  PubMed  Google Scholar 

  54. Mattila M, Torsti P (1966) Effect of monoamine oxidase inhibitors and some related compounds on lipid metabolism in rat. Plasma free fatty acids and lipoprotein lipase of the heart and adipose tissue. Ann Med Exp Biol Fenn 44(3):397–400

    Google Scholar 

  55. Carpéné C, Iffiú-Soltesz Z, Bour S et al (2007) Reduction of fat deposition by combined inhibition of monoamine oxidases and semicarbazide-sensitive amine oxidases in obese Zucker rats. Pharmacol Res 56(6):522–530

    Article  PubMed  CAS  Google Scholar 

  56. Carpéné C, Abello V, Iffiú-Soltész Z et al (2008) Limitation of adipose tissue enlargement in rats chronically treated with semicarbazide-sensitive amine oxidase and monoamine oxidase inhibitors. Pharmacol Res 57(6):426–434

    Article  PubMed  CAS  Google Scholar 

  57. Visentin V, Prévot D, Marti L, Carpéné C (2003) Inhibition of rat fat cell lipolysis by monoamine oxidase and semicarbazide-sensitive amine oxidase substrates. Eur J Pharmacol 466(3):235–243

    Article  CAS  PubMed  Google Scholar 

  58. Wanecq E, Bour S, Verwaerde P et al (2006) Increased monoamine oxidase and semicarbazide-sensitive amine oxidase activities in white adipose tissue of obese dogs fed a high-fat diet. J Physiol Biochem 62(2):113–123

    Article  CAS  PubMed  Google Scholar 

  59. Carter K, Nelson M, Robidoux J et al (2017) Kinetics of neurotransmitter metabolism by monoamine oxidase in porcine heart differs by location and is increased with obesity/metabolic syndrome. FASEB J 31(1_supplement):883.16

    Google Scholar 

  60. Bour S, Daviaud D, Gres S et al (2007) Adipogenesis-related increase of semicarbazide-sensitive amine oxidase and monoamine oxidase in human adipocytes. Biochimie 89(8):916–925

    Article  CAS  PubMed  Google Scholar 

  61. Ionica M (2020) Novel insights into adipose tissue and vascular dysfunction in obese patients with inflammatory status. PhD thesis defended the 22 of July 2020

    Google Scholar 

  62. Rayner JJ, Banerjee R, Francis JM et al (2015) Normalization of visceral fat and complete reversal of cardiovascular remodeling accompany gastric bypass, not banding. J Am Coll Cardiol 66(22):2569–70

    Google Scholar 

  63. Carpéné C, Mercader J, Le Gonidec S et al (2018) Body fat reduction without cardiovascular changes in mice after oral treatment with the MAO inhibitor phenelzine. Br J Pharmacol 175(12):2428–2440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Carpéné C, Boulet N, Chaplin A, Mercader J (2019) Past, present and future anti-obesity effects of flavin-containing and/or copper-containing amine oxidase inhibitors. Medicines (Basel) 6(1):9

    Article  CAS  Google Scholar 

  65. Byun Y, Park J, Hong SH et al (2013) The opposite effect of isotype-selective monoamine oxidase inhibitors on adipogenesis in human bone marrow mesenchymal stem cells. Bioorg Med Chem Lett 23(11):3273–3276

    Article  CAS  PubMed  Google Scholar 

  66. Cathcart MK, Bhattacharjee A (2014) Monoamine oxidase A (MAO-A): a signature marker of alternatively activated monocytes/macrophages. Inflamm Cell Signal 1(4):e161

    Google Scholar 

  67. Bhattacharjee A, Shukla M, Yakubenko VP et al (2013) IL-4 and IL-13 employ discrete signaling pathways for target gene expression in alternatively activated monocytes/macrophages. Free Radic Biol Med 54:1–16

    Article  CAS  PubMed  Google Scholar 

  68. Meulendyke KA, Ubaida-Mohien C, Drewes JL et al (2014) Elevated brain monoamine oxidase activity in SIV- and HIV-associated neurological disease. J Infect Dis 210(6):904–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ekuni D, Firth JD, Nayer T et al (2009) Lipopolysaccharide-induced epithelial monoamine oxidase mediates alveolar bone loss in a rat chronic wound model. Am J Pathol 175(4):1398–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vuohelainen V, Hamalainen M, Paavonen T et al (2015) Inhibition of monoamine oxidase A increases recovery after experimental cardiac arrest. Interact Cardiovasc Thorac Surg 21(4):441–449

    Article  PubMed  Google Scholar 

  71. Lam CS, Li JJ, Tipoe GL et al (2017) Monoamine oxidase A upregulated by chronic intermittent hypoxia activates indoleamine 2,3-dioxygenase and neurodegeneration. PLoS One 12(6):e0177940

    Google Scholar 

  72. Rațiu C, Uțu D, Petruș A et al (2018) Monoamine oxidase inhibition improves vascular function and reduces oxidative stress in rats with lipopolysaccharide-induced inflammation. Gen Physiol Biophys 37(6):687–694

    Article  PubMed  CAS  Google Scholar 

  73. Chaitidis P, Billett EE, O’Donnell VB et al (2004) Th2 response of human peripheral monocytes involves isoform-specific induction of monoamine oxidase-A. J Immunol 173(8):4821–4827

    Article  CAS  PubMed  Google Scholar 

  74. Sánchez-Rodríguez R, Munari F, Angioni R et al (2020) Targeting monoamine oxidase to dampen NLRP3 inflammasome activation in inflammation. Cell Mol Immunol

    Google Scholar 

  75. Dhabal S, Das P, Biswas P et al (2018) Regulation of monoamine oxidase A (MAO-A) expression, activity, and function in IL-13-stimulated monocytes and A549 lung carcinoma cells. J Biol Chem 293(36):14040–14064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gupta V, Khan AA, Sasi BK, Mahapatra NR (2015) Molecular mechanism of monoamine oxidase A gene regulation under inflammation and ischemia-like conditions: key roles of the transcription factors GATA2, Sp1 and TBP. J Neurochem 134(1):21–38

    Article  CAS  PubMed  Google Scholar 

  77. Deshwal S, Forkink M, Hu CH et al (2018) Monoamine oxidase-dependent endoplasmic reticulum-mitochondria dysfunction and mast cell degranulation lead to adverse cardiac remodeling in diabetes. Cell Death Differ 25(9):1671–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cui Y, Liu KW, Liang Y et al (2017) Inhibition of monoamine oxidase-B by selegiline reduces cigarette smoke-induced oxidative stress and inflammation in airway epithelial cells. Toxicol Lett 268:44–50

    Article  CAS  PubMed  Google Scholar 

  79. Ceriello A (2009) Hypothesis: the “metabolic memory”, the new challenge of diabetes. Diabetes Res Clin Pract 86(Suppl 1):S2-6

    Article  CAS  PubMed  Google Scholar 

  80. Emory H, Mizrahi N (2017) Glycaemic control by monoamine oxidase inhibition in a patient with type 1 diabetes. Diab Vasc Dis Res 14(2):163–165

    Article  PubMed  Google Scholar 

  81. Hruby A, Hu FB (2015) The epidemiology of obesity: a big picture. Pharmacoeconomics 33(7):673–689

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kelly T, Yang W, Chen CS et al (2008) Global burden of obesity in 2005 and projections to 2030. Int J Obes 32(9):1431–1437

    Article  CAS  Google Scholar 

  83. Meldrum DR, Morris MA, Gambone JC (2017) Obesity pandemic: causes, consequences, and solutions-but do we have the will? Fertil Steril 107(4):833–839

    Article  PubMed  Google Scholar 

  84. Misra M (2013) Obesity pharmacotherapy: current perspectives and future directions. Curr Cardiol Rev 9(1):33–54

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bray GA, Heisel WE, Afshin A et al (2018) The Science of obesity management: an endocrine society scientific statement. Endocr Rev 39(2):79–132

    Article  PubMed  PubMed Central  Google Scholar 

  86. Saadi E, White G (2014) Rewarding innovation in drug development. Am Health Drug Benefits 7(7):373–374

    PubMed  PubMed Central  Google Scholar 

  87. Blüher M (2013) Adipose tissue dysfunction contributes to obesity related metabolic diseases. Best Pract Res Clin Endocrinol Metab 27(2):163–177

    Article  PubMed  CAS  Google Scholar 

  88. Heinonen S, Jokinen R, Rissanen A, Pietiläinen KH (2020) White adipose tissue mitochondrial metabolism in health and in obesity. Obes Rev 21(2):e12958

    Google Scholar 

Download references

Acknowledgements

Work partially suported by the university internal grant code 6POSTDOC/1871/12.02.2020 (A.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danina M. Muntean .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sturza, A., Muntean, D.M., Crețu, O.M. (2021). Monoamine Oxidase, Obesity and Related Comorbidities: Discovering Bonds. In: Tappia, P.S., Ramjiawan, B., Dhalla, N.S. (eds) Cellular and Biochemical Mechanisms of Obesity. Advances in Biochemistry in Health and Disease, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-84763-0_10

Download citation

Publish with us

Policies and ethics