Skip to main content

Advertisement

Log in

Oxidative stress in metabolic diseases: current scenario and therapeutic relevance

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The metabolic syndrome is a clustering condition of increased abdominal obesity in concert with hyperglycemia, insulin resistance, hypertension, and dyslipidemia. It confers higher risk of metabolic diseases such as diabetes and ischemic heart disease and has been observed to be associated with high morbidity and mortality. It is a progressive pathological process for diabetes-induced complications and appears to be multifactorial in origin. Several preclinical, clinical, and epidemiological reports have shown a persistent link between the metabolic syndrome and oxidative stress. There is pronounced imbalance between pro-oxidants and anti-oxidants with increased production of oxidizing molecules, depletion of anti-oxidants, and consequently accumulation of protein and lipid oxidation products in the cell in metabolic syndrome. The increased cellular pro-oxidant activity also results in altered molecular pathways, mitochondrial dysfunction, deregulation in cell cycle control, chromosomal aberrations, inflammation, and overall decreased biological activity as well as impairment of the antioxidant systems. Here, the focus of our review article will be on the formation of oxidative species, the interplay between metabolic syndrome and oxidative stress, and its potential implications in therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data were included in the manuscript.

References

  1. Carrier A (2017) Metabolic syndrome and oxidative stress: a complex relationship. Antioxid Redox Signal 26:429–431. https://doi.org/10.1089/ars.2016.6929

    Article  CAS  Google Scholar 

  2. Rani V, Deep G, Singh RK, Palle K, Yadav UCS (2016) Oxidative stress and metabolic disorders: pathogenesis and therapeutic strategies. Life Sci 148:183–193. https://doi.org/10.1016/j.lfs.2016.02.002

    Article  CAS  Google Scholar 

  3. Saklayen MG (2018) The global epidemic of the metabolic syndrome. Curr Hypertens Rep 20:12. https://doi.org/10.1007/s11906-018-0812-z

    Article  Google Scholar 

  4. Brahe LK, Astrup A, Larsen LH (2016) Can we prevent obesity-related metabolic diseases by dietary modulation of the gut microbiota? Adv Nutr 7:90–101. https://doi.org/10.3945/an.115.010587

    Article  CAS  Google Scholar 

  5. Dludla PV, Nkambule BB, Jack B, Mkandla Z, Mutize T, Silvestri S, Orlando P, Tiano L, Louw J, Mazibuko-Mbeje SE (2018) Inflammation and oxidative stress in an obese state and the protective effects of gallic acid. Nutrients 11:23. https://doi.org/10.3390/nu11010023

    Article  CAS  Google Scholar 

  6. Luc K, Schramm-Luc A, Guzik TJ, Mikolajczyk TP (2019) Oxidative stress and inflammatory markers in prediabetes and diabetes. J Physiol Pharmacol. https://doi.org/10.26402/jpp.2019.6.01

    Article  Google Scholar 

  7. Newsholme P, Cruzat VF, Keane KN, Carlessi R, Paulo Ivo Homem de Bittencourt Jr (2016) Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem J 473: 4527–4550. https://doi.org/10.1042/BCJ20160503C

  8. Sozen E, Ozer NK (2017) Impact of high cholesterol and endoplasmic reticulum stress on metabolic diseases: An updated mini-review. Redox Biol 12:456–461. https://doi.org/10.1016/j.redox.2017.02.025

    Article  CAS  Google Scholar 

  9. Dunn J, Grider MH (2022) Physiology, adenosine triphosphate. In: StatPearls, Treasure Island

  10. Sharma GN, Gupta G, Sharma P (2018) A comprehensive review of free radicals, antioxidants, and their relationship with human ailments. Crit Rev Eukaryot Gene Expr 28:139–154. https://doi.org/10.1615/CritRevEukaryotGeneExpr.2018022258

    Article  Google Scholar 

  11. Pesta D, Roden M (2017) The janus head of oxidative stress in metabolic diseases and during physical exercise. Curr Diab Rep 17:41. https://doi.org/10.1007/s11892-017-0867-2

    Article  Google Scholar 

  12. Senoner T, Dichtl W (2019) Oxidative stress in cardiovascular diseases: still a therapeutic target? Nutrients 11:2090. https://doi.org/10.3390/nu11092090

    Article  CAS  Google Scholar 

  13. Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74. https://doi.org/10.2174/157015909787602823

    Article  CAS  Google Scholar 

  14. Sosa V, Moliné T, Somoza R, Paciucci R, Kondoh H, LLeonart ME (2013) Oxidative stress and cancer: an overview. Ageing Res Rev 12:376–390. https://doi.org/10.1016/j.arr.2012.10.004

    Article  CAS  Google Scholar 

  15. Massy ZA, Nguyen-Khoa T (2002) Oxidative stress and chronic renal failure: markers and management. J Nephrol 15:336–341

    CAS  Google Scholar 

  16. Park HS, Chun JN, Jung HY, Choi C, Bae YS (2006) Role of NADPH oxidase 4 in lipopolysaccharide-induced proinflammatory responses by human aortic endothelial cells. Cardiovasc Res 72:447–455. https://doi.org/10.1016/j.cardiores.2006

    Article  CAS  Google Scholar 

  17. Incalza MA, D’Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F (2018) Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol 100:1–19. https://doi.org/10.1016/j.vph.2017.05.005

    Article  CAS  Google Scholar 

  18. Khullar M, Abd Al-Rahman S, Al-Shudiefat LA, Binepal G, Singal PK (2010) Oxidative stress: a key contributor to diabetic cardiomyopathy. Can J Physiol Pharmacol 88:233–240. https://doi.org/10.1139/Y10-016

    Article  CAS  Google Scholar 

  19. Snelson M, Coughlan MT (2019) Dietary advanced glycation end products: digestion, metabolism and modulation of gut microbial ecology. Nutrients 11:215. https://doi.org/10.3390/nu11020215

    Article  CAS  Google Scholar 

  20. Delarue J, Magnan C (2007) Free fatty acids and insulin resistance. Curr Opin Clin Nutr Metab Care 10:142–148. https://doi.org/10.1097/MCO.0b013e328042ba90

    Article  CAS  Google Scholar 

  21. Osellame LD, Blacker TS, Duchen MR (2012) Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab 26:711–723. https://doi.org/10.1016/j.beem.2012.05.003

    Article  CAS  Google Scholar 

  22. Burgos-ME A-JZ, de Martínez MA, Iannantuoni F, Escribano-LI L-DS, Salom C, Jover A, Mora V, Roldan I, Solá E, Rocha M, Víctor VM (2019) Relationship between oxidative stress, ER stress, and inflammation in Type 2 diabetes: the battle continues. J Clin Med 8:1385. https://doi.org/10.3390/jcm8091385

    Article  CAS  Google Scholar 

  23. Rendra E, Riabov V, Mossel DM, Sevastyanova T, Harmsen MC, Kzhyshkowska J (2019) Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology 224:242–253. https://doi.org/10.1016/j.imbio.2018.11.010

    Article  CAS  Google Scholar 

  24. Roberts CK, Sindhu KK (2009) Oxidative stress and metabolic syndrome. Life Sci 84:705–712. https://doi.org/10.1016/j.lfs.2009.02.026

    Article  CAS  Google Scholar 

  25. Yara S, Lavoie JC, Levy E (2015) Oxidative stress and DNA methylation regulation in the metabolic syndrome. Epigenomics 7:283–300. https://doi.org/10.2217/epi.14.84

    Article  CAS  Google Scholar 

  26. Dursun E, Akalın FA, Genc T, Cinar N, Erel O, Yildiz BO (2016) Oxidative stress and periodontal disease in obesity. Medicine (Baltimore) 95:e3136. https://doi.org/10.1097/MD.0000000000003136

    Article  CAS  Google Scholar 

  27. Waddington RJ, Moseley R, Embery G (2000) Reactive oxygen species: a potential role in the pathogenesis of periodontal diseases. Oral Dis 6:138–151. https://doi.org/10.1111/j.1601-0825.2000.tb00325.x

    Article  CAS  Google Scholar 

  28. Jo J, Gavrilova O, Pack S, Jou W, Mullen S, Sumner AE, Cushman SW, Periwal V (2009) Hypertrophy and/or hyperplasia: dynamics of adipose tissue growth. PLoS Comput Biol 5:e1000324. https://doi.org/10.1371/journal.pcbi.1000324

    Article  CAS  Google Scholar 

  29. Han CY (2016) Roles of reactive oxygen species on insulin resistance in adipose tissue. Diabetes Metab J 40:272–279. https://doi.org/10.4093/dmj.2016.40.4.272

    Article  Google Scholar 

  30. Jankovic A, Korac A, Buzadzic B, Otasevic V, Stancic A, Daiber A, Korac B (2015) Redox implications in adipose tissue dysfunction—a new look at old acquaintances. Redox Biol 6:19–32. https://doi.org/10.1016/j.redox.2015.06.018

    Article  CAS  Google Scholar 

  31. Den Hartigh LJ, Omer M, Goodspeed L, Wang S, Wietecha T, O’Brien KD, Han CY (2017) Adipocyte-specific deficiency of NADPH oxidase 4 delays the onset of insulin resistance and attenuates adipose tissue inflammation in obesity. Arterioscler Thromb Vasc Biol 37:466–475. https://doi.org/10.1161/ATVBAHA.116.308749

    Article  CAS  Google Scholar 

  32. Fukunaka A, Fujitani Y (2018) Role of zinc homeostasis in the pathogenesis of diabetes and obesity. Int J Mol Sci 19:476. https://doi.org/10.3390/ijms19020476

    Article  CAS  Google Scholar 

  33. Dludla PV, Nkambule BB, Tiano L, Louw J, Jastroch M, Mazibuko-Mbeje SE (2018) Uncoupling proteins as a therapeutic target to protect the diabetic heart. Pharmacol Res 137:11–24. https://doi.org/10.1016/j.phrs.2018.09.013

    Article  CAS  Google Scholar 

  34. Choromańska B, Myśliwiec P, Łuba M, Wojskowicz P, Myśliwiec H, Choromańska K, Dadan J, Piotrowska MZ, Zalewska A, Maciejczyk M (2020) Bariatric surgery normalizes protein glycoxidation and nitrosative stress in morbidly obese patients. Antioxidants 9:1087. https://doi.org/10.3390/antiox9111087

    Article  CAS  Google Scholar 

  35. Klimiuk A, Maciejczyk M, Choromańska M, Fejfer K, Waszkiewicz N, Zalewska A (2019) Salivary redox biomarkers in different stages of dementia severity. J Clin Med 8:840. https://doi.org/10.3390/jcm8060840

    Article  CAS  Google Scholar 

  36. Pawlukianiec C, Gryciuk ME, Mil KM, Żendzian-Piotrowska M, Zalewska A, Maciejczyk M (2020) A new insight into meloxicam: assessment of antioxidant and anti-glycating activity in in vitro studies. Pharmaceuticals 13:240. https://doi.org/10.3390/ph13090240

    Article  CAS  Google Scholar 

  37. Alvarez B, Radi R (2003) Peroxynitrite reactivity with amino acids and proteins. Amino Acids 25:295–311. https://doi.org/10.1007/s00726-003-0018-8

    Article  CAS  Google Scholar 

  38. van der Kraan PM, Davidson ENB, van den Berg WB (2010) A role for age-related changes in TGFβ signaling in aberrant chondrocyte differentiation and osteoarthritis. Arthritis Res Ther 12:201. https://doi.org/10.1186/ar2896

    Article  CAS  Google Scholar 

  39. Maciejczyk M, Szulimowska J, Taranta-Janusz K, Wasilewska A, Zalewska A (2020) Salivary gland dysfunction, protein glycooxidation and nitrosative stress in children with chronic kidney disease. J Clin Med 9:1285. https://doi.org/10.3390/jcm9051285

    Article  CAS  Google Scholar 

  40. Itani SI, Zhou Q, Pories WJ, MacDonald KG, Dohm GL (2000) Involvement of protein kinase C in human skeletal muscle insulin resistance and obesity. Diabetes 49:1353–1358. https://doi.org/10.2337/diabetes.49.8.1353

    Article  CAS  Google Scholar 

  41. Schmitz-Peiffer C (2002) Protein kinase C and lipid-induced insulin resistance in skeletal muscle. Ann N Y Acad Sci 967:146–157. https://doi.org/10.1111/j.1749-6632.2002.tb04272.x

    Article  CAS  Google Scholar 

  42. Bansode RR, Huang W, Roy SK, Mehta M, Mehta KD (2008) Protein kinase Cβ deficiency increases fatty acid oxidation and reduces fat storage. J Biol Chem 283:231–236. https://doi.org/10.1074/jbc.M707268200

    Article  CAS  Google Scholar 

  43. Huang W, Bansode R, Mehta M, Mehta KD (2009) Loss of protein kinase Cβ function protects mice against diet-induced obesity and development of hepatic steatosis and insulin resistance. Hepatology 49:1525–1536. https://doi.org/10.1002/hep.22815

    Article  CAS  Google Scholar 

  44. Lopez Galvez MI (2011) Protein kinase C inhibitors in the treatment of diabetic retinopathy. Rev Curr Pharm Biotechnol 12:386–391. https://doi.org/10.2174/138920111794480606

    Article  Google Scholar 

  45. Rehman K, Akash MSH (2016) Mechanisms of inflammatory responses and development of insulin resistance: how are they interlinked? J Biomed Sci 23:87. https://doi.org/10.1186/s12929-016-0303-y

    Article  Google Scholar 

  46. Ighodaro OM (2018) Molecular pathways associated with oxidative stress in diabetes mellitus. Biomed Pharmacother 108:656–662. https://doi.org/10.1016/j.biopha.2018.09.058

    Article  CAS  Google Scholar 

  47. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787–790. https://doi.org/10.1038/35008121

    Article  CAS  Google Scholar 

  48. Robertson RP (2004) Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J Biol Chem 279:42351–42354. https://doi.org/10.1074/jbc.R400019200

    Article  CAS  Google Scholar 

  49. Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107:1058–1070. https://doi.org/10.1161/CIRCRESAHA.110.223545

    Article  CAS  Google Scholar 

  50. Du X, Matsumura T, Edelstein D, Rossetti L, Zsengellér Z, Szabó C, Brownlee M (2003) Inhibition of GAPDH activity by poly (ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Investig 112:1049–1057. https://doi.org/10.1172/JCI18127

    Article  CAS  Google Scholar 

  51. Rolo AP, Palmeira CM (2006) Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol 212:167–178. https://doi.org/10.1016/j.taap.2006.01.003

    Article  CAS  Google Scholar 

  52. Chung SSM, Ho ECM, Lam KSL, Chung SK (2003) Contribution of polyol pathway to diabetes-induced oxidative stress. J Am Soc Nephrol 14:S233–S236. https://doi.org/10.1097/01.asn.0000077408.15865.06

    Article  CAS  Google Scholar 

  53. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820. https://doi.org/10.1038/414813a

    Article  CAS  Google Scholar 

  54. Degenhardt TP, Thorpe SR, Baynes JW (1998) Chemical modification of proteins by methylglyoxal. Cell Mol Biol 44:1139–1145

    CAS  Google Scholar 

  55. Yao D, Brownlee M (2010) Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands. Diabetes 59:249–255. https://doi.org/10.2337/db09-0801

    Article  CAS  Google Scholar 

  56. Scivittaro V, Ganz MB, Weiss MF (2000) AGEs induce oxidative stress and activate protein kinase C-βII in neonatal mesangial cells. Am J Physiol Renal Physiol 278:F676–F683. https://doi.org/10.1152/ajprenal.2000.278.4.F676

    Article  CAS  Google Scholar 

  57. Boyer F, Vidot JB, Dubourg AG, Rondeau P, Essop MF, Bourdon E (2015) Oxidative stress and adipocyte biology: focus on therole of AGEs. Oxid Med Cell Longev 2015:534873. https://doi.org/10.1155/2015/534873

    Article  Google Scholar 

  58. Nishizuka Y (1995) Protein kinase C and lipid signaling for sustained cellular responses. FASEB J 9:484–496

    Article  CAS  Google Scholar 

  59. Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, Aoki T, Etoh T, Hashimoto T, Naruse M, Sano H, Utsumi H, Nawata H (2000) High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C–dependent activation of NAD (P) H oxidase in cultured vascular cells. Diabetes 49:1939–1945. https://doi.org/10.2337/diabetes.49.11.1939

    Article  CAS  Google Scholar 

  60. Figueroa-Romero C, Sadidi M, Feldman EL (2008) Mechanisms of disease: the oxidative stress theory of diabetic neuropathy. Rev Endocr Metab Disord 9:301–314. https://doi.org/10.1007/s11154-008-9104-2

    Article  CAS  Google Scholar 

  61. Edwards JL, Vincent AM, Cheng HT, Feldman EL (2008) Diabetic neuropathy: mechanisms to management. Pharmacol Ther 120:1–34. https://doi.org/10.1016/j.pharmthera.2008.05.005

    Article  CAS  Google Scholar 

  62. Cornier M-A, Dabelea D, Hernandez TL, Lindstrom RC, Steig AJ, Stob NR, Pelt REV, Wang H, Eckel RH (2008) The metabolic syndrome. Endocr Rev 29:777–822. https://doi.org/10.1210/er.2008-0024

    Article  CAS  Google Scholar 

  63. King H, Aubert RE, Herman WH (1998) Global Burden of Diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care 21:1414–1431. https://doi.org/10.2337/diacare.21.9.1414

    Article  CAS  Google Scholar 

  64. Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A (1972) New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 30:595–602. https://doi.org/10.1016/0002-9149(72)90595-4

    Article  CAS  Google Scholar 

  65. Wang J, Ye S, Wang Q, Kralik PM, Epstein PN (2006) Causes and characteristics of diabetic cardiomyopathy. Rev Diabet Stud 3:108–117. https://doi.org/10.1900/RDS.2006.3.108

    Article  Google Scholar 

  66. Defraigne JO (2005) A central pathological mechanism explaining diabetic complications? Rev Med Liege 60:472–478

    CAS  Google Scholar 

  67. Yi T, Zhang Z, Zheng C, Wintergerst KA, Keller BB, Cai Lu (2020) Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence. Nat Rev Cardiol 17:585–607. https://doi.org/10.1038/s41569-020-0339-2

    Article  Google Scholar 

  68. Ramasamy R, Goldberg IJ (2010) Aldose reductase and cardiovascular diseases, creating human-like diabetic complications in an experimental model. Circ Res 106:1449–1458. https://doi.org/10.1161/CIRCRESAHA.109.213447

    Article  CAS  Google Scholar 

  69. Ramana KV, Chandra D, Srivastava S, Bhatnagar A, Srivastava SK (2003) Nitric oxide regulates the polyol pathway of glucose metabolism in vascular smooth muscle cells. FASEB J 17:417–425. https://doi.org/10.1096/fj.02-0722com

    Article  CAS  Google Scholar 

  70. Marshall S, Bacote V, Traxinger RR (1991) Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J Biol Chem 266:4706–4712

    Article  CAS  Google Scholar 

  71. McClain DA, Crook ED (1996) Hexosamines and Insulin Resistance. Diabetes 45:1003–1009. https://doi.org/10.2337/diab.45.8.1003

    Article  CAS  Google Scholar 

  72. Federici M, Menghini R, Mauriello A, Hribal ML, Ferrelli F, Lauro D et al (2002) Insulin-dependent activation of endothelial nitric oxide synthase is impaired by O-linked glycosylation modification of signaling proteins in human coronary endothelial cells. Circulation 106:466–472. https://doi.org/10.1161/01.cir.0000023043.02648.51

    Article  CAS  Google Scholar 

  73. Inoguchi T, Battan R, Handler E, Sportsman JR, Heath W, King GL (1992) Preferential elevation of protein kinase C isoform beta II and diacylglycerol levels in the aorta and heart of diabetic rats: differential reversibility to glycemic control by islet cell transplantation. PNAS 89:11059–11063. https://doi.org/10.1073/pnas.89.22.11059

    Article  CAS  Google Scholar 

  74. Shiba T, Inoguchi T, Sportsman JR, Heath WF, Bursell S, King GL (1993) Correlation of diacylglycerol level and protein kinase C activity in rat retina to retinal circulation. Am J Physiol 265:E783–E793. https://doi.org/10.1152/ajpendo.1993.265.5.E783

    Article  CAS  Google Scholar 

  75. Way KJ, Isshiki K, Suzuma K, Yokota T, Zvagelsky D, Schoen FJ, Sandusky GE, Pechous PA, Vlahos CJ, Wakasaki H, King GL (2002) Expression of connective tissue growth factor is increased in injured myocardium associated with protein kinase C β2 activation and diabetes. Diabetes 51:2709–2718. https://doi.org/10.2337/diabetes.51.9.2709

    Article  CAS  Google Scholar 

  76. Goldin A, Beckman JA, Schmidt AM, Creager MA (2006) Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 114:597–605. https://doi.org/10.1161/CIRCULATIONAHA.106.621854

    Article  CAS  Google Scholar 

  77. Aragno M, Mastrocola R, Medana C, Catalano MG, Vercellinatto I, Danni O, Boccuzzi G (2006) Oxidative stress-dependent impairment of cardiac-specific transcription factors in experimental diabetes. Endocrinology 147:5967–5974. https://doi.org/10.1210/en.2006-0728

    Article  CAS  Google Scholar 

  78. Festi D, Schiumerini R, Eusebi LH, Marasco G, Taddia M, Colecchia A (2014) Gut microbiota and metabolic syndrome. World J Gastroenterol 20:16079–16094. https://doi.org/10.3748/wjg.v20.i43.16079

    Article  Google Scholar 

  79. Vezza T, Abad-JZ M-CM, Rocha M, Víctor VM (2020) Microbiota-mitochondria inter-talk: a potential therapeutic strategy in obesity and type 2 diabetes. Antioxidants 9:848. https://doi.org/10.3390/antiox9090848

    Article  CAS  Google Scholar 

  80. Franco-OA GJA (2017) The microbiome-mitochondrion connection: common ancestries, common mechanisms. Common Goals mSystems 2:e00018-e117. https://doi.org/10.1128/mSystems.00018-17

    Article  Google Scholar 

  81. Yann SGC, Edeas M (2016) Microbiota–mitochondria inter-talk: consequence for microbiota–host interaction. Pathogens Dis 74:96. https://doi.org/10.1093/femspd/ftv096

    Article  CAS  Google Scholar 

  82. Lobet E, Letesson J-J, Arnould T (2015) Mitochondria: a target for bacteria. Biochem Pharmacol 94:173–185. https://doi.org/10.1016/j.bcp.2015.02.007

    Article  CAS  Google Scholar 

  83. Neish AS, Jones RM (2014) Redox signaling mediates symbiosis between the gut microbiota and the intestine. Gut Microbes 5:250–253. https://doi.org/10.4161/gmic.27917

    Article  Google Scholar 

  84. Vona R, Gambardella L, Cittadini C, Straface E, Pietraforte D (2019) Biomarkers of oxidative stress in metabolic syndrome and associated diseases. Oxid Med Cell Long 2019:8267234. https://doi.org/10.1155/2019/8267234

    Article  CAS  Google Scholar 

  85. Luccia BD, Crescenzo R, Mazzoli A, Cigliano L, Venditti P, Walser J-C, Widmer A, Baccigalupi L, Ricca E, Iossa S (2015) Rescue of fructose-induced metabolic syndrome by antibiotics or faecal transplantation in a rat model of obesity. PLoS ONE 10:e0134893. https://doi.org/10.1371/journal.pone.0134893

    Article  CAS  Google Scholar 

  86. Smith RAJ, Porteous CM, Gane AM, Murphy MP (2003) Delivery of bioactive molecules to mitochondria in vivo. PNAS 100:5407–5412. https://doi.org/10.1073/pnas.0931245100

    Article  CAS  Google Scholar 

  87. Nightingale H, Pfeffer G, Bargiela D, Horvath R, Chinnery PF (2016) Emerging therapies for mitochondrial disorders. Brain 139:1633–1648. https://doi.org/10.1093/brain/aww081

    Article  Google Scholar 

  88. Serviddio G, Bellanti F, Sastre J, Vendemiale G, Altomare E (2010) Targeting mitochondria: a new promising approach for the treatment of liver diseases. Curr Med Chem 17:2325–2337. https://doi.org/10.2174/092986710791698530

    Article  CAS  Google Scholar 

  89. Apostolova N, Victor VM (2015) Molecular strategies for targeting antioxidants to mitochondria: therapeutic implications. Antioxid Redox Signal 22:686–729. https://doi.org/10.1089/ars.2014.5952

    Article  CAS  Google Scholar 

  90. Escribano LI, Diaz MN, Rovira LS, de Marañon AM, Orden S, Alvarez A, Bañuls C, Rocha M, Murphy MP, Mijares AH, Victor VM (2016) The mitochondria-targeted antioxidant MitoQ modulates oxidative stress, inflammation and leukocyte-endothelium interactions in leukocytes isolated from type 2 diabetic patients. Redox Biol 10:200–205. https://doi.org/10.1016/j.redox.2016.10.017

    Article  CAS  Google Scholar 

  91. Escribano-LI BC, Diaz-MN IF, Rovira-Llopis S, Gomis R et al (2019) The mitochondria-targeted antioxidant MitoQ modulates mitochondrial function and endoplasmic reticulum stress in pancreatic β cells exposed to hyperglycaemia. Cell Physiol Biochem 52:186–197. https://doi.org/10.33594/000000013

    Article  CAS  Google Scholar 

  92. Singh CK, Chhabra G, Ndiaye MA, Garcia-Peterson LM, Mack NJ, Ahmad N (2018) The role of sirtuins in antioxidant and redox signaling. Antioxid Redox Signal 28:643–661. https://doi.org/10.1089/ars.2017.7290

    Article  CAS  Google Scholar 

  93. Maiese K (2021) Sirtuins in metabolic disease: innovative therapeutic strategies with SIRT1, AMPK, mTOR, and nicotinamide. Sirtuin Biol Cancer Metab Dis 3–23

  94. Pérez MP, Mikhailidis DP, Athyros VG, Bullo M, Couture P, Covas MI et al (2017) Lifestyle recommendations for the prevention and management of metabolic syndrome: an international panel recommendation. Nutr Rev 75:307–326. https://doi.org/10.1093/nutrit/nux014

    Article  Google Scholar 

  95. Unuofin JO, Lebelo SL (2020) Antioxidant effects and mechanisms of medicinal plants and their bioactive compounds for the prevention and treatment of type 2 diabetes: an updated review. Oxid Med Cell Longev 2020:1356893. https://doi.org/10.1155/2020/1356893

    Article  CAS  Google Scholar 

  96. Pulido-MM M-FJ, Ramirez-TC R-T (2016) Curcumin and health. Molecules 21:264. https://doi.org/10.3390/molecules21030264

    Article  CAS  Google Scholar 

  97. Martins GB, De Souza DB, de Morais NFA, Matta L, Fernandes SC (2016) The potential role of antioxidants in metabolic syndrome. Curr Pharm Des 22:859–869. https://doi.org/10.2174/1381612822666151209152352

    Article  CAS  Google Scholar 

  98. Chaplin A, Carpéné C, Mercader J (2018) Resveratrol, metabolic syndrome, and gut microbiota. Nutrients 10:1651. https://doi.org/10.3390/nu10111651

    Article  CAS  Google Scholar 

  99. Tiderencel KA, Hutcheon DA, Ziegler J (2020) Probiotics for the treatment of type 2 diabetes: a review of randomized controlled trials. Diabetes Metab Res Rev 36:e3213. https://doi.org/10.1002/dmrr.3213

    Article  CAS  Google Scholar 

  100. Cani PD, Van Hul M (2015) Novel opportunities for next-generation probiotics targeting metabolic syndrome. Curr Opin Biotechnol 32:21–27. https://doi.org/10.1016/j.copbio.2014.10.006

    Article  CAS  Google Scholar 

  101. Wang H, Lu Y, Yan Y, Tian S, Zheng D, Leng D et al (2020) Promising treatment for type 2 diabetes: fecal microbiota transplantation reverses insulin resistance and impaired islets. Front Cell Infect Microbiol 9:455. https://doi.org/10.3389/fcimb.2019.00455

    Article  CAS  Google Scholar 

  102. Montan PD, Sourlas A, Olivero J, Silverio D, Guzman E, Kosmas CE (2019) Pharmacologic therapy of obesity: mechanisms of action and cardiometabolic effects. Ann Transl Med 7:393. https://doi.org/10.21037/atm.2019.07.27

    Article  CAS  Google Scholar 

  103. Owen MR, Doran E, Halestrap AP (2000) Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochemical Journal 348:607–614

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All the figures were “Created with BioRender.com.” an online tool for the illustrations.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SKR: conceptualization, data collection, methodology, writing a manuscript, figures preparation, and references. MK: conceptualization, methodology, editing a manuscript.

Corresponding author

Correspondence to Madhu Khullar.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This is a review article. So no ethical approval is required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raut, S.K., Khullar, M. Oxidative stress in metabolic diseases: current scenario and therapeutic relevance. Mol Cell Biochem 478, 185–196 (2023). https://doi.org/10.1007/s11010-022-04496-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04496-z

Keywords

Navigation