Skip to main content

Diseases of Fruits, Tubers, and Seeds Caused by Phoma sensu lato Species Complex

  • Chapter
  • First Online:
Phoma: Diversity, Taxonomy, Bioactivities, and Nanotechnology

Abstract

Fruits, tubers, and seeds contribute to human health, and their production generates high income for countries. The quality of these foods deteriorates due to the attack of pathogens, such as Phoma spp. The impact of the Phoma sensu lato species complex on agricultural products is significant; the incidence of the disease can be greater than 50%. They can cause a yield loss of up to 25% in fruits; moreover, infected seeds can be vehicles of the pathogen to the seedlings. Indeed, to avoid severe economic damage, the governments of different countries have quarantined or regulated the most aggressive Phoma species. Furthermore, some species of Phoma produce mycotoxins; therefore, food safety protocols must be followed. The chapter focuses on different diseases caused by the Phoma sensu lato species complex in fruits, seeds, and tubers. Moreover, it discusses general disease management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • A’Hara D (2015) Detection and identification of Phoma pathogens of potato. In: Plant Pathology. Humana Press, New York, NY. pp. 17-27.

    Chapter  Google Scholar 

  • Aveskamp MM, De Gruyter J, Crous, PW (2008) Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance. Fungal Divers 31:1-18.

    Google Scholar 

  • Aveskamp MM, Woudenberg JHC, de Gruyter J, Turco E, Groenewald JZ, Crous PW (2009) Development of taxon-specific sequence characterized amplified region (SCAR) markers based on actin sequences and DNA amplification fingerprinting (DAF): a case study in the Phoma exigua species complex. Mol Plant Pathol 10:403-414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aveskamp MM, de Gruyter J, Woudenberg JHC, Verkley GJM, Crous PW (2010) Highlights of the Didymellaceae: A polyphasic approach to characterise Phoma and related pleosporalean genera. Stud Mycol 65:1-60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avila-Quezada GD, Esquivel JF, Silva-Rojas HV, Leyva-Mir SG, Garcia-Avila C, Noriega-Orozco L, Rivas-Valencia P, Ojeda-Barrios D, Melgoza-Castillo A (2018) Emerging plant diseases under a changing climate scenario: Threats to our global food supply. Emirates J Food Agriculture 30:1-10.

    Google Scholar 

  • Belisario A (1996) The principal diseases of walnut in Italy. Infor Fitopatol 46: 20-25.

    Google Scholar 

  • Bennett A, Ponder MM, Garcia-Diaz J (2018) Phoma Infections: Classification, potential food sources, and its clinical impact. Microorganisms 6:58.

    Article  CAS  PubMed Central  Google Scholar 

  • Bernardez MM, De la Montana MJ, Garcia QJ (2004) HPLC determination of sugars in varieties of chestnut fruits from Galicia (Spain). J Food Compos Anal 17:63-67.

    Article  CAS  Google Scholar 

  • Boerema GH (1967) The Phoma organisms causing gangrene of potatoes. Neth J Plant Pathol 73:190-192.

    Article  Google Scholar 

  • Boerema GH (1973) The Phoma and Ascochyta species described by Wollenweber and Hochapfel in their study on fruit-rotting. Stud Mycol 3:1-50.

    Google Scholar 

  • Chen Q, Zhang KE, Zhang G, Cai L (2015) A polyphasic approach to characterise two novel species of Phoma (Didymellaceae) from China. Phytotaxa 197:267-281.

    Article  Google Scholar 

  • Chilvers MI, Rogers JD, Dugan FM, Stewart JE, Chen WD, Peever L (2009) Didymella pisi sp. nov., the teleomorph of Ascochyta pisi. Mycol Res 113:391-400.

    Article  CAS  PubMed  Google Scholar 

  • Choi IY, Kim JH, Lee WH, Park JH, Shin HD (2015) First report of black rot caused by Phoma cucurbitacearum on Momordica charantia in Korea. Plant Dis 99:727.

    Google Scholar 

  • Chong W, Xiaoju Z, Xianglin Z, Wei Z, Yike Q, Yawei L, Yu Z, Yanfei S, Entry Y (2015) Quarantine and identification of Phoma helianthi Taberosi in sunflower imported from Kazakhstan. Plant Quarantine 02.

    Google Scholar 

  • Davidson JA (2012) Epidemiology and management of ascochyta blight of field pea (Pisum sativum) in South Australia. PhD thesis. In: https://digital.library.adelaide.edu.au/dspace/bitstream/2440/77182/8/02whole.pdf

  • de Gruyter J (2012) Revised taxonomy of Phoma and allied genera. PhD thesis. Wageningen University, Wageningen, the Netherlands, 180 pp

    Google Scholar 

  • Deb D, Khan A, Dey N (2020) Phoma diseases: Epidemiology and control. Plant Pathol 69:1203-1217.

    Article  CAS  Google Scholar 

  • Dhyani A, Sati M, Khulbe R (1990) Seed-borne fungi of chilli with special reference to pathogenicity and control of Phoma destructiva. Indian Phytopathol 43:110-113.

    Google Scholar 

  • Didvania S, Shah R, Jadon KS (2012) A new disease of bell pepper (Capsicum annuum var. grossum) caused by Drechslera bicolor, its pathophysiology, efficacy of fungicides and botanicals. Plant Pathol J 11:68-72.

    Article  Google Scholar 

  • Echerenwa MC, Umechuruba CI (2004) Post-harvest fungal diseases of pawpaw (Carica papaya L.) fruits and seeds in Nigeria. Glob J Pure Appl Sci 10:69-73.

    Google Scholar 

  • EPPO (1997) Phoma exigua var. foveata data sheets on quarantine pests. Prepared by CABI and EPPO for the European Union. Quarantine pests for Europe, University Press, Cambridge. pp. 865-871.

    Google Scholar 

  • Ezra D, Kroitor T, Sadowsky A (2007) Molecular characterization of Phoma tracheiphila, causal agent of Mal secco disease of citrus, in Israel. Eur J Plant Pathol 118:183-191.

    Article  Google Scholar 

  • Fatima S, Khot YC (2017) Isolation of post harvest fungi from mango (Mangifera indica) fruits. Epitome J 3. http://epitomejournals.com/VolumeArticles/FullTextPDF/253_Research_Paper.pdf

  • Fitt BD, Brun H, Barbetti M, Rimmer S (2006) World-wide importance of phoma stem canker (Leptosphaeria maculans and L. biglobosa) on oilseed rape (Brassica napus). In: Sustainable strategies for managing Brassica napus (oilseed rape) resistance to Leptosphaeria maculans (phoma stem canker). Springer. pp 3-15.

    Chapter  Google Scholar 

  • García-González T, Sáenz-Hidalgo HK, Silva-Rojas HV, Morales-Nieto C, Vancheva T, Koebnik R, Ávila-Quezada GD (2018) Enterobacter cloacae, an emerging plant-pathogenic bacterium affecting chili pepper seedlings. Plant Pathol J 34:1-10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gardea AA, García-Bañuelos ML, Orozco-Avitia JA, Sánchez-Chávez E, Sastré-Flores B, Ávila-Quezada G (2017) Cacao (Theobroma cacao L.). In: Fruit and Vegetable Phytochemicals: Chemistry and Human Health. 2nd Edition Wiley Blackwell. pp. 921-940.

    Chapter  Google Scholar 

  • Garibaldi A, Gullino ML (1991) Soil solarization in southern European countries, with emphasis on soilborne disease control of protected crops. Soil solarization. CRC Press, Boca Raton, FL, USA. pp. 227-235.

    Google Scholar 

  • Gogoi S, Senapoty D (2018) First report of Phoma exigua causing fruit rot of brinjal in northeast India (Assam) with a new pathogenicity test method. Int J Curr Microbiol Appl Sci 7:2593-2596.

    Article  Google Scholar 

  • Huang LH, Hanlin RT (1975) Fungi occurring in freshly harvested and in-market pecans. Mycologia 67:689-700.

    Article  CAS  PubMed  Google Scholar 

  • Irinyi L, Kövics GJ, Sándor E (2009) Taxonomical re-evaluation of Phoma-like soybean pathogenic fungi. Mycol Res 113:249-260.

    Article  PubMed  Google Scholar 

  • Jackson G (2017) Pacific Pests and Pathogens – Fact Sheets. Capsicum Phoma blight (239) https://www.pestnet.org/fact_sheets/capsicum_phoma_blight_239.htm

  • Jamaluddin M, Tandon P, Tandon RN (1975) A fruit rot of aonla (Phyllanthus emblica L.) caused by Phoma sp. Proc Nat Acad Sci India 45:75-76.

    Google Scholar 

  • Joffe AZ 1969 The mycoflora of fresh and stored groundnut kernels in Israel. Mycopathol Mycol Appl 39:255-264.

    Article  Google Scholar 

  • Khani M (2015) Aspects of epidemiology of Phoma koolunga (ascochyta blight of field pea) PhD thesis. The University of Adelaide. Australia.

    Google Scholar 

  • Khani M, Davidson J, Sosnowski M, Scott E (2016) Survival, transmission and control of Phoma koolunga in field pea seed and reaction of field pea genotypes to the pathogen. Australas Plant Pathol 45:91-102.

    Article  Google Scholar 

  • Kövics GJ, de Gruyter J, van der Aa HA (1999) Phoma sojicola comb. nov. and other hyaline-spored coelomycetes pathogenic on soybean. Mycol Res 103:1065-1070.

    Article  Google Scholar 

  • Krieger R (2001) Handbook of Pesticide Toxicology: Principles and Agents. 2nd edition. Academic Press.

    Google Scholar 

  • Kubota M, Kishi K, Abiko K (2000) Phoma leaf spot, stem and fruit rot of tomato caused by Phoma lycopersici Cooke in Japan. Jpn J Phytopathol 66:12-17.

    Article  Google Scholar 

  • Laundon GF (1971) Records of fungal plant disease in New Zealand. N Z J Bot 9:610-624.

    Article  Google Scholar 

  • Leach LD, Macdonald JD (1976) Seed-borne phoma betae as influenced by area of sugarbeet production, seed processing and fungicidal seed treatments. J Amer Soc Sugarbeet Technologists 19: 4-15.

    Article  Google Scholar 

  • Liang Y, Zhang R, Liu H, Hou Y (2020) First report of postharvest fruit rot of Physalis pubescens in China caused by Phoma pomorum. J Plant Pathol 102:979-979.

    Article  Google Scholar 

  • Lloyd AB (1959) The transmission of Phoma lingam (Tode) Desm. in the seeds of swede, turnip, chou moellier, rape, and kale. N Z J Agric Res 2:649-658.

    Article  Google Scholar 

  • Maresi G, Longa O, Turchetti T (2013) Brown rot on nuts of Castanea sativa Mill: an emerging disease and its causal agent. iForest 6:294

    Article  Google Scholar 

  • Maširević SN, Medić-Pap SS, Terzić AN, Dedić BP, Balalić ID (2014) Phoma Macdonaldi on seed and its importance in etiology of Phoma black stem in sunflower. Zb Matitse srp prir nauke 126:57-65.

    Article  Google Scholar 

  • Maughan J, Shanmuganathan N, Hepworth G (1991) Fungicide treatments for the control of storage rots of seed potatoes. Australas Plant Pathol 20:142-145.

    Article  Google Scholar 

  • Mendes MAS, Urben AF, Oliviera AS, Marhinho VLA (2006) Interceptação de Phoma exigua var. foveata, praga exótica e quarentenária para o Brasil, em germoplasma de batata procedente da França. Fitopatol Bras 31:601-603.

    Article  Google Scholar 

  • Mihajlović M, Rekanović E, Hrustić J, Grahovac M, Tanović B (2017) Methods for management of soilborne plant pathogens. Pestic fitomed 32:9-24.

    Article  Google Scholar 

  • Morgan-Jones G, Burch KB (1988) Studies in the genus Phoma. XI. Concerning Phoma lycopersici, the anamorph of Didymella lycopersici, causal organism of stem canker and fruit rot of tomato. Mycotaxon 32:133-142.

    Google Scholar 

  • Nega E, Ulrich R, Werner S, Jahn M (2003) Hot water treatment of vegetable seed: an alternative seed treatment method to control seed-borne pathogens in organic farming. Z Pflanzenk Pflanzen 110:220-234.

    Google Scholar 

  • Okello JJ, Zhou Y, Kwikiriza N, Ogutu S, Barker I, Schulte-Geldermann E, Atieno E, Ahmed JT (2017) Productivity and food security effects of using of certified seed potato: the case of Kenya’s potato farmers. Agric Food Secur 6:1-9.

    Article  Google Scholar 

  • Oliveira RC, Goncalves SS, Oliveira MS, Dilkin P, Mallmann CA, Freitas RS, Bianchi P, Correa B (2017) Natural occurrence of tenuazonic acid and Phoma sorghina in Brazilian sorghum grains at different maturity stages. Food Chem 230:491-496.

    Article  CAS  PubMed  Google Scholar 

  • Palavouzis S, Tzamos S, Paplomatas E, Thomidis T (2015) First report of Phoma aliena causing fruit rots of pomegranates in northern Greece. J Plant Pathol 97:215.

    Google Scholar 

  • Pellegrino C, Gilardi G, Gullino ML, Garibaldi A (2010) Detection of Phoma valerianellae in lamb’s lettuce seeds. Phytoparasitica 38:159-165.

    Article  Google Scholar 

  • Pétriacq P, López A, Luna E (2018) Fruit decay to diseases: can induced resistance and priming help?. Plants 7:77.

    Article  PubMed Central  Google Scholar 

  • Pitt JI, Hocking AD, Bhudhasamai K, Miscamble BF, Wheeler KA, Tanboon-Ek P (1993) The normal mycoflora of commodities from Thailand. 1. Nuts and oilseeds. Int J Food Microbiol 20:211-226.

    Article  CAS  PubMed  Google Scholar 

  • Prusky D, Kobiler I, Miyara I, Alkan N (2009) Fruit diseases. In: The mango, botany, production and uses. CAB International, 2nd edition. pp. 210-231.

    Google Scholar 

  • Rai M, Rajak RC (1993) Distinguishing characteristics of some Phoma species. Mycotaxon 48:389-414.

    Google Scholar 

  • Rai M, Tiwari VV, Irinyi L, Kövics GJ (2014) Advances in taxonomy of genus Phoma: Polyphyletic nature and role of phenotypic traits and molecular systematics. Indian J Microbiol 54:123-128.

    Article  CAS  PubMed  Google Scholar 

  • Schmitt A, Koch E, Stephan D, Kromphardt C, Jahn M, Krauthausen HJ, Forsberg G, Werner S, Amein T, Wright SAI, Tinivella F, van der Wolf J, Groot SPC (2009) Evaluation of non-chemical seed treatment methods for the control of Phoma valerianellae on lamb’s lettuce seeds. J Plant Dis Protec 116:200-207.

    Article  CAS  Google Scholar 

  • Schmitz S, Zini J, Etienne M, Moreau J-M, Chandelier A, Cavelier M, 2006. Effectiveness of thiophanatemethyl, trifloxystrobin and vinclozolin on canker caused by Phoma exigua Desm. on ash tree seedlings. BASE. Liege Université.

    Google Scholar 

  • Shin JH, Fu T, Park KH, Kim KS (2017) The effect of fungicides on mycelial growth and conidial germination of the ginseng root rot fungus, Cylindrocarpon destructans. Mycobiology 45:220-225.

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith ER, Fredrickson TN, Hadidian Z (1968) Toxic effects of the sodium and the N, N’-dibenzylethylenediamine salts of tenuazonic acid (NSC-525816 and NSC-82260). Cancer Chemother Rep 52:579-585.

    CAS  PubMed  Google Scholar 

  • Steyn PS, Rabie CJ (1976) Characterization of magnesium and calcium tenuazonate from Phoma sorghina. Phytochemistry 15:1977-1979.

    Article  CAS  Google Scholar 

  • Umaerus V, Scholte K, Turkensteen L (1989) Crop rotation and the occurrence of fungal diseases in potatoes. In: Effects of Crop Rotation on Potato Production in the Temperate Zones. Springer. pp. 171-189.

    Chapter  Google Scholar 

  • Wonni I, Sereme D, Ouedraogo I, Kassankagno A, Dao I, Ouedraogo L, Nacro, S (2017) Diseases of cashew nut plants (Anacardium Occidentale L.) in Burkina Faso. Adv Plants Agric Res 6:00216.

    Google Scholar 

  • Woudenberg JHC., Aveskamp MM, de Gruyter J, Spiers AG, Crous PW (2009) Multiple Didymella teleomorphs are linked to the Phoma clematidina morphotype. Persoonia 22:56-62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yahia EM, Gardea-Béjar A, Ornelas-Paz J, Maya-Meraz IO, Rodríguez-Roque MJ, Rios-Velasco C, Salas-Marina MA (2019) Preharvest factors affecting postharvest quality. In: Postharvest Technology of Perishable Horticultural Commodities. Woodhead Publishing. pp. 99-128.

    Google Scholar 

  • Yang C-D, Chen X-R, Jiang H-X, Pu C.-J (2012) First report of potato gangrene caused by Phoma foveata in China. Plant Dis 96:1698.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to Carolina Alvarado Gonzalez for the artwork of Fig. 4.2.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Avila-Quezada, G.D., Rai, M. (2022). Diseases of Fruits, Tubers, and Seeds Caused by Phoma sensu lato Species Complex. In: Rai, M., Zimowska, B., Kövics, G.J. (eds) Phoma: Diversity, Taxonomy, Bioactivities, and Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-81218-8_4

Download citation

Publish with us

Policies and ethics