Skip to main content

Basic Components of Connective Tissues and Extracellular Matrix: Fibronectin, Fibrinogen, Laminin, Elastin, Fibrillins, Fibulins, Matrilins, Tenascins and Thrombospondins

  • Chapter
  • First Online:
Progress in Heritable Soft Connective Tissue Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1348))

Abstract

Collagens are the most abundant components of the extracellular matrix (ECM) and many types of soft tissues. Elastin is another major component of certain soft tissues, such as arterial walls and ligaments. It is an insoluble polymer of the monomeric soluble precursor tropoelastin, and the main component of elastic fibers in matrix tissue where it provides elastic recoil and resilience to a variety of connective tissues, e.g., aorta and ligaments. Elastic fibers regulate activity of transforming growth factors β (TGFβ) through their association with fibrillin microfibrils. Elastin also plays a role in cell adhesion, cell migration, and has the ability to participate in cell signaling. Mutations in the elastin gene lead to cutis laxa. Many other molecules, though lower in quantity, function as essential, structural and/or functional components of the extracellular matrix in soft tissues. Some of these are reviewed in this chapter. Besides their basic structure, biochemistry and physiology, their roles in disorders of soft tissues are discussed only briefly as most chapters in this volume deal with relevant individual compounds. Fibronectin with its multidomain structure plays a role of “master organizer” in matrix assembly as it forms a bridge between cell surface receptors, e.g., integrins, and compounds such collagen, proteoglycans and other focal adhesion molecules. It also plays an essential role in the assembly of fibrillin-1 into a structured network. Though the primary role of fibrinogen is in clot formation, after conversion to fibrin by thrombin it also binds to a variety of compounds, particularly to various growth factors, and as such, fibrinogen is a player in cardiovascular and extracellular matrix physiology. Laminins contribute to the structure of the ECM and modulate cellular functions such as adhesion, differentiation, migration, stability of phenotype, and resistance towards apoptosis. Fibrillins represent the predominant core of microfibrils in elastic as well as non-elastic extracellular matrixes, and interact closely with tropoelastin and integrins. Not only do microfibrils provide structural integrity of specific organ systems, but they also provide basis for elastogenesis in elastic tissues. Fibrillin is important for the assembly of elastin into elastic fibers. Mutations in the fibrillin-1 gene are closely associated with Marfan syndrome. Latent TGFβ binding proteins (LTBPs) are included here as their structure is similar to fibrillins. Several categories of ECM components described after fibrillins are sub-classified as matricellular proteins, i.e., they are secreted into ECM, but do not provide structure. Rather they interact with cell membrane receptors, collagens, proteases, hormones and growth factors, communicating and directing cell-ECM traffic. Fibulins are tightly connected with basement membranes, elastic fibers and other components of extracellular matrix and participate in formation of elastic fibers. Matrilins have been emerging as a new group of supporting actors, and their role in connective tissue physiology and pathophysiology has not been fully characterized. Tenascins are ECM polymorphic glycoproteins found in many connective tissues in the body. Their expression is regulated by mechanical stress both during development and in adulthood. Tenascins mediate both inflammatory and fibrotic processes to enable effective tissue repair and play roles in pathogenesis of Ehlers-Danlos, heart disease, and regeneration and recovery of musculo-tendinous tissue. One of the roles of thrombospondin 1 is activation of TGFβ. Increased expression of thrombospondin and TGFβ activity was observed in fibrotic skin disorders such as keloids and scleroderma. Cartilage oligomeric matrix protein (COMP) or thrombospondin-5 is primarily present in the cartilage. High levels of COMP are present in fibrotic scars and systemic sclerosis of the skin, and in tendon, especially with physical activity, loading and post-injury. It plays a role in vascular wall remodeling and has been found in atherosclerotic plaques as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADAMTS:

a-Disintegrin-and-etalloproteinase-with-thrombospondin motifs

cbEGF:

Calcium-binding epidermal growth factor

CNS:

Central nervous system

COMP:

Cartilage oligomeric matrix protein

ECM:

Extracellular matrix

EFEMP1:

EGF-containing fibulin-like ECM protein 1

FGF:

Fibroblast growth factor

FN:

Fibronectin

LDL:

Low-density lipoprotein

LE:

Laminin-type epidermal growth factor-like

LOX:

Lysyl oxidase

LTBPs:

Latent TGFβ binding proteins

MMP:

Matrix metalloproteinase

PDGF:

Platelet-derived growth factor

SLRP:

Small leucine rich proteoglycan

TGFβs:

Transforming growth factors β

TIMP:

Tissue inhibitor of metalloproteinase

TSP:

Thrombospondin

VEGF:

Vascular endothelial growth factor

References

  • Adams JC, Lawler J (2004) The thrombospondins. Int J Biochem Cell Biol 36:961–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams JC, Lawler J (2011) The thrombospondins. Cold Spring Harb Perspect Biol 3:a00971

    Article  Google Scholar 

  • Agah A, Kyriakides TR, Lawler J, Bornstein P (2002) The lack of thrombospondin-1 (TSP1) dictates the course of wound healing in double-TSP1/TSP/2-null mice. Am J Pathol 161:831–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akbareian SE et al (2013) Enteric neueal crest-derived cells promote their migration by modifying their microenvironment through tenascin-C production. Dev Biol 382:446–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allaire E, Forough R, Clowes M, Starcher B, Clowes AW (1998) Local overexpression of TIMP-1 prevents aortic aneurysm degeneration and rupture in a rat model. J Clin Invest 102:1413–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anthony S et al (2015) Multiple epiphyseal dysplasia. J Am Acad Orthop Surg 23:164–172

    Article  PubMed  Google Scholar 

  • Ariens RA, Lai TS, Weisel JW, Greenberg CS, Grant PJ (2002) Role of factor XIII in fibrin clot formation and effects of genetic polymorphisms. Blood 100:743–754

    Article  CAS  PubMed  Google Scholar 

  • Armstrong PC, Peter K (2012) GPIIb/IIIa inhibitors: from bench to bedside and back to bench again. Thromb Haemost 107:808–814

    Article  CAS  PubMed  Google Scholar 

  • Aumailley M (2018) Isolation and purification of laminins. Methods Cell Biol 143:187–205

    Article  CAS  PubMed  Google Scholar 

  • Aumailley M, Bruckner-Tuderman L, Carter WG, Deutzmann R, Edgar D, Ekblom P, Engel J, Engvall E, Hohenester E, Jones JCR, Kleinman HK, Marinkovich MP, Martin GR, Mayer U, Meneguzzi G, Miner JH, Miyazaki M, Patarroyo M, Paulsson M, Quaranta V, Sanes JR, Sasaki T, Sekiguchi K, Sorokin LM, Talts JF, Tryggvason K, Uitto J, Virtanen I, von der Mark K, Wewer UM, Yamada Y, Yurchenco PD (2005) A simplified laminin nomenclature. Matrix Biol 24:326–332

    Article  CAS  PubMed  Google Scholar 

  • Baccarani-Contri M, Vincenzi D, Cicchetti F, Mori G, Pasquali-Ronchetti I (1990) Immunocytochemical localization of proteoglycans within normal elastin fibers. Eur J Cell Biol 53:305–312

    CAS  PubMed  Google Scholar 

  • Beals RK, Hecht F (1971) Congenital contractural arachnodactyly: a heritable disorder of connective tissue. Bone Joint Surg Am 53:987–993

    Article  CAS  Google Scholar 

  • Belmadani S, Bernal J, Wei CC, Pallero MA, Dell’italia L, Murphy-Ullrich JE, Brecek KH (2007) A thrombospondin-1 antagonist of transforming growth factor-beta activation blocks cardiomyopathy in rats with diabetes and elevated angiotensin II. Am J Pathol 171:777–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berk DR, Bentley DD, Bayliss SJ, Lind A, Urban Z (2012) Cutis laxa: a review. J Am Acad Dermatol 66:842.e1-17

    Article  PubMed  Google Scholar 

  • Berndt A, Kosmehl H, Katenkamp D, Tauchmann V (1994) Appearance of the myofibroblastic phenotype in Dupuytren’s disease is associated with a fibronectin, laminin, collagen type IV and tenascin extracellular matrix. Pathobiology 62:55–58

    Article  CAS  PubMed  Google Scholar 

  • Bornstein P (2009) Matricellular proteins: an overview. J Cell Commun Signal 3:163–165

    Article  PubMed  PubMed Central  Google Scholar 

  • Cain SA, Morgan A, Sherratt MJ, Ball SG, Shuttleworth CA, Kielty CM (2006) Proteomic analysis of fibrillin-rich microfibrils. Proteomics 6:111–122

    Article  CAS  PubMed  Google Scholar 

  • Castro MM, Rizzi E, Figueiredo-Lopes L, Fernandes K, Bendhack LM, Pitol DL, Gerlach RF, Tanus-Santos JE (2008) Metalloproteinase inhibition ameliorates hypertension and prevents vascular dysfunction and remodeling in renovascular hypertensive rats. Atherosclerosis 198:320–331

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekaran S, Guo NH, Rodrigues RG, Kaiser J, Roberts DD (1999) Pro-adhesive abd chemotactic activities of thrombospondin-1 for breast carcinoma cells are mediated by alpha3beta1 integrin and regulated by insulin-like growth factor-1 and CD98. J Biol Chem 274:11408–11416

    Article  CAS  PubMed  Google Scholar 

  • Chang J, Chaudhuri O (2019) Beyond proteases: basement membrane mechanics and cancer invasion. J Cell Biol 218:2456–2469

    Article  PubMed  PubMed Central  Google Scholar 

  • Charbonneau NL, Dzamba BJ, Ono RN, Keene DR, Corson GM, Reinhardt DP, Sakai LY (2003) Fibrillins can co-assemble in fibrils, but fibrillin fibril composition displays cell-specific differences. J Biol Chem 278:2740–2749

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Sottile J, Strickland DK, Mosher DF (1996) Binding and degradation of thrombospondin-1 mediated through heparan sulfate proteoglucans and low-density-lipoprotein receptor-related protein: localization of the functional activity to the trimeric N-terminal heparin-binding region of thrombospondin-1. Biochem J 318:959–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chipev CC, Simman R, Hatch G, Katz AE, Siegel DM, Simon M (2000) Myofibroblast phenotype and apoptosis in keloid and palmar fibroblasts in vitro. Cell Death Differ 7:166–176

    Article  CAS  PubMed  Google Scholar 

  • Chiquet M, Gelman L, Lutz R, Maier S (2009) From mechanostransduction to extracellular matrix gene expression in fibroblasts. Biochim Biophys Acta 1793:911–920

    Article  CAS  PubMed  Google Scholar 

  • Chiquet-Ehrismann R, Chiquet M (2003) Regulation and putative functions during pathological stress. J Pathol 200:488–499

    Article  CAS  PubMed  Google Scholar 

  • Chiquet-Ehrismann R, Kalla P, Pearson CA, Beck K, Chiquet M (1988) Tenascin interferes with fibronectin action. Cell 53:383–390

    Article  CAS  PubMed  Google Scholar 

  • Chockalingam PS, Glasson SS, Lohmander LS (2013) Tenascin-C levels in synovial fluid are elevated after injury to the human and canine joint and correlate with markers of inflammation and matrix degradation. Osteoarthr Cartil 21:339–345

    Article  CAS  Google Scholar 

  • Chung MI, Miao M, Stahl RJ, Chan E, Parkinson J, Keeley FW (2006) Sequences and domain structures of mammalian, avian, amphibian, and teleost tropoelastins: clues to the evolutionary history of elastin. Matrix Biol 25:495–504

    Article  Google Scholar 

  • Cilia La Corte AL, Philippou H, Ariëns RA (2011) Role of fibrin structure in thrombosis and vascular disease. Adv Protein Chem Struct Biol 83:75–127

    Article  PubMed  Google Scholar 

  • Clark RA, Lanigan JM, DellaPelle P, Manseau E, Dvorak HF, Colvin RB (1982) Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound reepithelialization. J Invest Dermatol 79:264–269

    Article  CAS  PubMed  Google Scholar 

  • Csiszar K (2001) Lysyl oxidases: a novel multifunctional amine oxidase family. Prog Nucleic Acid Res Mol Biol 70:1–32

    Article  CAS  PubMed  Google Scholar 

  • Dallas SL, Chen Q, Sivakumar P (2006) Dynamics of assembly and reorganization of extracellular matrix proteins. Curr Top Dev Biol 75:1–24

    Article  CAS  PubMed  Google Scholar 

  • De Vega S et al (2007) TM14 is a new member of the fibulin family (fibulin-7) that interacts with extracellular matrix molecules and is active for cell binding. J Biol Chem 282:30878–30888

    Article  PubMed  Google Scholar 

  • De Vega S et al (2016) Identification of peptides derived from the C-terminal domain of fibulin-7 active for endothelial cell adhesion and tube formation disruption. Biopolymers 106:184–195

    Article  PubMed  PubMed Central  Google Scholar 

  • Della Corte A, De Santo LS, Montagnani S, Quarto C, Romano G, Amarelli C, Scardone M, De Feo M, Cotrufo M, Caianiello G (2006) Spatial patterns of matrix protein expression in dilated ascending aorta with aortic regurgitation: congenital bicuspid valve versus Marfan’s syndrome. J Heart Valve Dis 15:20–27

    PubMed  Google Scholar 

  • Demidova-Rice TN, Geevarghese A, Herman IM (2011) Bioactive peptides derived from vascular endothelial cell extracellular matrices promote microvascular morphogenesis and wound healing in vitro. Wound Repair Regen 19(1):59–70

    Article  PubMed  Google Scholar 

  • DeVega A, Iwamoto T, Yamada Y (2009) Fibulins: multiple roles in matrix structures and tissue functions. Cell Mol Life Sci 66:1890–1902

    Article  CAS  Google Scholar 

  • Di Cesare P, Hauser N, Lehman D, Pasumarti S, Paulsson M (1994) Cartilage oligomeric matrix protein (COMP) is an abundant component of tendon. FEBS Lett 354:237–240

    Article  Google Scholar 

  • Domogatskaya A, Rodin S, Tryggvason K (2012) Functional diversity of laminins. Annu Rev Cell Dev Biol 28:523–553

    Article  CAS  PubMed  Google Scholar 

  • Donaldson DJ, Mahan JT, Amrani D, Hawiger J (1989) Fibrinogen-mediated epidermal cell migration: structural correlates for fibrinogen function. J Cell Sci 94:101–108

    Article  CAS  PubMed  Google Scholar 

  • Doolittle RF, Goldbaum DM, Doolittle LR (1978) Designation of sequences involved in the “coiled-coil” interdominal connections in fibrinogen: constructions of an atomic scale model. J Mol Biol 120:311–325

    Article  CAS  PubMed  Google Scholar 

  • Du Y, Wang Y, Wang L, Liu B, Tian Q, Liu CJ, Zhang T, Xu Q, Zhu Y, Ake O, Qi Y, Tang C, Kong W, Wang X (2011) Cartilage oligomeric matrix protein inhibits vascular smooth muscle calcification by interacting with bone morphogenetic protein-2. Circ Res 108:917–928

    Article  CAS  PubMed  Google Scholar 

  • Eberwein P, Reinhard T, Agostini H, Poloschek CM, Guthoff R, Auw-Haedrich C (2010) Intensive intracorneal keloid formation in a case of Peters plus syndrome and in Peters anomaly with maximum manifestation. Ophthalmologe 107:178–181

    Article  CAS  PubMed  Google Scholar 

  • Egging D et al (2007) Interactions of human tenascin-X domains with dermal extracellular matrix molecules. Arch Dermatol Res 298(8):389–396

    Article  CAS  PubMed  Google Scholar 

  • Elefteriou F et al (2001) Binding of tenascin-X to decorin. FEBS Lett 495(1–2):44–47

    Article  CAS  PubMed  Google Scholar 

  • Elzie CA, Murphy-Ullrich JE (2004) The N-terminus of thrombospondin: the domain stands apart. Int J Biochem Cell Biol 36:1090–1101

    Article  CAS  PubMed  Google Scholar 

  • Faury G, Pezet M, Knutsen RH, Boyle WA, Heximer SP, MacLean SE, Minkes RK, Blumer KJ, Kovacs A, Kelly DP, Li DY, Starcher B, Mecham RP (2003) Developmental adaptation of the mouse cardiovascular system to elastin haploinsufficiency. J Clin Invest 112:1419–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fish RJ, Neerman-Arbez M (2012) Fibrinogen gene regulation. Thromb Haemost 108:419–426

    Article  CAS  PubMed  Google Scholar 

  • Flück M, Tunc-Civelek V, Chiquet M (2000) Rapid and reciprocal regulation of tenascin-C and tenascin-Y expression by loading of skeletal muscle. J Cell Sci 113:3583–3591

    Article  PubMed  Google Scholar 

  • Flück M, Mund SI, Schittny JC, Klossner S, Durieux AC, Giraud MN (2008) Mechano-regulated tenascin-C orchestrates muscle repair. Proc Natl Acad Sci U S A 105:13662–13667

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujishima Y et al (2017) Adiponectin association with T-cadherin protects against neointima proliferation and atherosclerosis. FASEB J 31(4):1571–1583

    Article  CAS  PubMed  Google Scholar 

  • Fung YC (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Geffrotin C et al (1995) Distinct tissue distribution in pigs of tenascin-X and tenascin-C transcripts. Eur J Biochem 231(1):83–92

    Article  CAS  PubMed  Google Scholar 

  • Gheduzzi D, Guerra D, Bochicchio B, Pepe A, Tamburro AM, Quaglino D, Mithieux S, Weiss AS, Pasquali Ronchetti I (2005) Heparan sulphate interacts with tropoelastin, with some tropoelastin peptides and is present in human dermis elastic fibers. Matrix Biol 24:15–25

    Article  CAS  PubMed  Google Scholar 

  • Giltay R, Timpi R, Kostka G (1999) Sequence, recombinant expression and tissue localization of two novel extracellular matrix proteins, fibulin-3 and fibulin-4. Matrix Biol 18:469–480

    Article  CAS  PubMed  Google Scholar 

  • Goldblum SE, Young BA, Wang P, Murphy-Ullrich JE (1999) Thrombospondin-1 induces tyrosine phosphorylation of adherens junction proteins and regulates an endothelial paracellular pathway. Mol Biol Cell 10:1537–1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenwald SJ (2008) Ageing of the conduit arteries. J Pathol 211:157–172

    Article  Google Scholar 

  • Grounds MD, Sorokin L, White J (2005) Strength at the extracellular matrix-muscle interface. Scand J Med Sci Sports 15:381–391

    Article  CAS  PubMed  Google Scholar 

  • Hagios C, Koch M, Spring J, Chiquet M, Chiquet-Ehrismann R (1996) Tenascin-Y: a protein of novel domain structure is secreted by differentiated fibroblasts of muscle connective tissue. J Cell Biol 134:1499–1512

    Article  CAS  PubMed  Google Scholar 

  • Halasz K, Kassner A, Morgelin M, Heinegård D (2007) COMP as a catalyst in collagen fibrillogenesis. J Biol Chem 282:31166–31173

    Article  CAS  PubMed  Google Scholar 

  • Halper J (2021) Major proteins of the extracellular proteins. In: Allewell NM (ed) Encyclopedia of biological chemistry. Elsevier

    Google Scholar 

  • Hambleton S, Valeyev NV, Muranyi A, Knott V, Werner JM, McMichael AJ, Handford PA, Downing AK (2004) Structural and functional properties of the human notch-1 ligand binding region. Structure 12:2173–2183

    Article  CAS  PubMed  Google Scholar 

  • Hanna NN, Eickholt K, Agamanolis D, Burnstine R, Edward DP (2010) Atypical Peters plus syndrome with new associations. J AAPS 14:181–183

    Google Scholar 

  • Heinegård D (2009) Proteoglycans and more – from molecules to biology. Int J Exp Path 70:575–586

    Article  Google Scholar 

  • Heinonen TY, Maki M (2009) Peters’-plus syndrome is a congenital disorder of glycosylation caused by a defect in the beta1,3-glucosyltransferase that modifies thrombospondin type 1 repeats. Ann Med 41:2–10

    Article  CAS  PubMed  Google Scholar 

  • Hess D, Keusch JJ, Lesnik Oberstein SA, Hennekam RC, Hofsteenge J (2008) Peter Plus syndrome is a new congenital disorder of glycosylation and involves defective O-glycosylation of thrombospondin type 1 repeats. J Biol Chem 283:7354–7360

    Article  CAS  PubMed  Google Scholar 

  • Hesselstrand R, Kassner A, Heinegård D, Saxne T (2008) COMP: a candidate molecule in the pathogenesis of systemic sclerosis with a potential as a disease marker. Ann Rheum Dis 67:1242–1248

    Article  CAS  PubMed  Google Scholar 

  • Hinek A, Rabinovitch M (1994) 67-kD elastin-binding protein is a protective “companion” of extracellular insoluble elastin and intracellular tropoelastin. J Cell Biol 126:563–574

    Article  CAS  PubMed  Google Scholar 

  • Hirai M, Ohbayashi T, Horiguchi M, Okawa K, Hagiwara A, Chien KR, Kita T, Nakamura T (2007) Fibulin-5/DANCE has an elastogenic organizer activity that is abrogated by proteolytic cleavage in vivo. J Cell Biol 176:1061–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hohenester E (2019) Structural biology of laminins. Essays Biochem 63:285–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hohenstein B, Daniel C, Hausknecht B, Boehmer K, Riess R, Amann KU, Hugo CP (2008) Correlation of enhanced thrombospondin-1 expression, TGF-beta signalling, and proteinuria in human type-2 diabetic nephropathy. Nephrol Dial Transplant 23:3880–3887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holden P, Meadows RS, Chapman KL, Grant ME, Kadler KE, Briggs MD (2001) Cartilage oligomeric matrix protein interacts with type IX collagen, and disruptions to these interactions identify a pathogenetic mechanism in a bone dysplasia family. J Biol Chem 276:6046–6055

    Article  CAS  PubMed  Google Scholar 

  • Horiguchi M, Inoue T, Ohbayashi T, Hirai M, Noda K, Marmorstein LY, Yabe D, Takagi K, Akama TO, Kita T, Kimura T, Nakamura T (2009) Fibulin-4 conducts proper elastogenesis via interaction with cross-linking enzyme lysyl oxidase. Proc Natl Acad Sci U S A 106:19029–19034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Chiquet-Ehrismann R, Moyano JV, Garcia-Pardo V, Orend G (2001) Interference of tenascin-C with syndecan-4 binding to fibronectin blocks cell adhesion and stimulates tumor cell proliferation. Cancer Res 61:8586–8594

    CAS  PubMed  Google Scholar 

  • Hubmacher D, Sabatier L, Annis DS, Mosher DF, Reinhardt DP (2011) Homocysteine modifies structural and functional properties of fibronectin and interferes with the fibronectin-fibrillin-1 interaction. Biochemistry 50:5322–5332

    Article  CAS  PubMed  Google Scholar 

  • Ikuta T, Ariga H, Matsumoto K (2000) Extracellular matrix tenascin-X in combination with vascular endothelial growth factor B enhances endothelial cell proliferation. Genes Cells 5(11):913–927

    Article  CAS  PubMed  Google Scholar 

  • Imanaka-Yoshida K (2012) Tenascin-C in cardiovascular tissue remodeling: from development to inflammation and repair. Circ J 76:2513–2520

    Article  CAS  PubMed  Google Scholar 

  • Imanaka-Yoshida K, Yoshida T, Miyagawa-Tomita S (2014) Tenascin-C in development and disease of blood vessels. Anat Rec (Hoboken) 297:1747–1757

    Article  CAS  Google Scholar 

  • Jackson GC et al (2012) Pseudoachondroplasia and multiple epiphyseal dysplasia: a 7-year comprehensive analysis of the known disease genes identify novel and recurrent mutations and procides an accurate assessment of their relative contribution. Hum Mutat 33:144–157

    Article  CAS  PubMed  Google Scholar 

  • Jaman NB, Al-Sayegh A (2016) Seizures as an atypical feature of Beal’s syndrome. Sultan Qaboos Univ Med J 16:e375–e378

    Article  PubMed  PubMed Central  Google Scholar 

  • Järvinen TA, Józsa L, Kannus P, Järvinen TL, Hurme T, Kvist M, Pelto-Huikko M, Kalimo H, Järvinen M (2003) Mechanical loading regulates the expression of tenascin-C in the myotendinous junction and tendon but does not induce de novo synthesis in the skeletal muscle. J Cell Sci 116:857–866

    Article  PubMed  Google Scholar 

  • Jiang L, Wang M, Zhang J, Monticone RE, Telljohann R, Spinnetti G, Pintus G, Lakatta EG (2008) Increased calpain-1 activity mediates age-associated angiotensin II signaling of vascular smooth muscle cells. PLoS One 3:e2231

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones FS, Jones PL (2000) The tenascin family of ECM glycoproteins: structure, function, and regulation during embryonic development and tissue remodeling. Dev Dyn 218

    Google Scholar 

  • Karnik SK, Brooke BS, Bayes-Genis A, Sorensen L, Wythe JD, Schwartz RS, Keating MT, Li DY (2003) A critical role for elastin signaling in vascular morphogenesis and disease. Development 130:411–423

    Article  CAS  PubMed  Google Scholar 

  • Karoulias SZ et al (2019) A novel ADAMTS17 variant that causes Weill-Marchesani syndrome 4 alters fibrillin-1 and collagen type I deposition in the extracellular matrix. Matrix Biol. (in press)

    Google Scholar 

  • Kartashova EA, Sarvilina IV (2019) About the prognostic role of fibulin-5 protein in the progression of pathological vascular remodeling in patients with isolated sistolic arterial hypertension. Adv Gerontol 32(6):1003–1010

    CAS  PubMed  Google Scholar 

  • Kielty CM (2006) Elastic fibres in health and disease. Expert Rev Mol Med 8:1–23

    Article  PubMed  Google Scholar 

  • Kielty CM, Sherratt MJ, Marson A, Baldock C (2005) Fibrillin microfibrils. Adv Protein Chem 70:405–436

    Article  CAS  PubMed  Google Scholar 

  • Kim YM, Kim EC, Kim Y (2011) The human lysyl oxidase-like 2 protein functions as an amine oxidase toward collagen and elastin. Mol Biol Rep 38:145–149

    Article  CAS  PubMed  Google Scholar 

  • Kjaer M (2004) Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev 84:649–698

    Article  CAS  PubMed  Google Scholar 

  • Klenotic PA, Munier FL, Marmorstein LY, Anand-Apte B (2004) Tissue inhibitor of metalloproteinase-3 (TIMP-3) is a binding partner of epithelial growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1): implications for macular degenerations. J Biol Chem 279:30469–30473

    Article  CAS  PubMed  Google Scholar 

  • Kostrominova TY, Brooks SV (2013) Age-related changes in structure and extracellular matrix protein expression levels in rat tendons. Age

    Google Scholar 

  • Kozel BA, Mecham RP (2019) Elastic fiber ultrastructure and assembly. Matrix Biol 84:31–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozel BA, Ciliberto CH, Mecham RP (2004) Deposition of tropoelastin into the extracellular matrix requires a competent elastic fiber scaffold but not live cells. Matrix Biol 23:23–34

    Article  CAS  PubMed  Google Scholar 

  • Kozel BA, Rongish BJ, Czirok A, Zach J, Little CD, Davis EC, Knutsen RH, Wagenseil JE, Levy MA, Mecham RP (2006) Elastic fiber formation: a dynamic view of extracellular matrix assembly using timer reporters. J Cell Physiol 207:87–96

    Article  CAS  PubMed  Google Scholar 

  • Kreja L, Liedert A, Schlenker H, Brenner RE, Fiedler J, Friemert B, Dürselen L, Ignatius A (2012) Effects of mechanical strain on human mesenchymal stem cells and ligament fibroblasts in a textured poly(L-lactide) scaffold for ligament tissue engineering. J Mater Sci Mater Med 23:2575–2582

    Article  CAS  PubMed  Google Scholar 

  • Leahy DJ, Aukhil I, Erickson HP (1996) 2.0 A crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region. Cell 84:155–164

    Article  CAS  PubMed  Google Scholar 

  • Lee JE, Kim Y (2006) A tissue-specific variant of the human lysyl oxidase-like protein 3 (LOXL3) functions as an amine oxidase with substrate specificity. J Biol Chem 281:37282–37290

    Article  CAS  PubMed  Google Scholar 

  • Lethias C et al (2006) A model of tenascin-X integration within the collagenous network. FEBS Lett 580(26):6281–6285

    Article  CAS  PubMed  Google Scholar 

  • Li DY, Brooke D, Davis EC, Mecham RP, Sorensen LK, Boak KK, Eichwald E, Keating MT (1998) Elastin is an essential determinant of arterial morphogenesis. Nature 393:276–289

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Froehlich J, Galis ZS, Lakatta EG (1999) Increased expression of matrix metalloproteinase-2 in the thickened intima of aged rats. Hypertension 33:116–123

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Zhao Y, Gao J, Pawlyk B, Starcher B, Spencer JA, Yanagisawa H, Zuo J, Li T (2004) Elastic fiber homeostasis requires lysyl oxidase-like 1 protein. Nat Genet 36:178–182

    Article  CAS  PubMed  Google Scholar 

  • Lu A, Miao M, Schoeb TR, Agarwal A, Murphy-Ullrich JE (2011) Blockade of TSP-1 dependent TGF-beta activity reduces renal injury and proteinuria in a murine model of diabetic nephropathy. Am J Pathol 178:2573–2586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacDonald PR, Lustig A, Steinmetz MO, Kammerer RA (2010) Laminin chain assembly is regulated by specific coiled-coil interactions. J Struct Biol 170:398–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackey AL, Brandstetter S, Schjerling P, Bojsen-Moller J, Qvortrup K, Pedersen MM, Doessing S, Kjaer M, Magnusson SP, Langberg H (2011) Sequences response of extracellular matrix de-adhesion and fibrotic regulators after muscle damage is involved in protection against future injury in human skeletal muscle. FASEB J 25:1943–1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackie EJ, Scott-Burden T, Hahn AW, Kern F, Bernhardt J, Regenass S, Weller A, Bühler FR (1992) Expression of tenascin by vascular smooth muscle cells. Alterations in hypertensive rats and stimulation by angiotensin II. Am J Pathol 141:377–388

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mao Y, Schwarzbauer J (2005) Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol 24:389–399

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto KI, Aoki H (2020) The roles of tenascins in cardiovascular, inflammatory, and heritable connective tissue diseases. Front Immunol 11:609752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto K et al (2002) Distribution of extracellular matrix tenascin-X in sciatic nerves. Acta Neuropathol 104(5):448–454

    Article  CAS  PubMed  Google Scholar 

  • Mecham RP (1998) Overview of extracellular matrix, Current protocols in cell biology. Wiley, New York

    Book  Google Scholar 

  • Midwood KS, Schwarzbauer JS (2002) Tenascin-C modulates matrix contraction via focal adhesion kinase- and Rho-mediated signaling pathways. Mol Biol Cell 13:3601–3613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Midwood KS, Hussenet T, Langlois B, Orend G (2011) Advances in tenascin-C biology. Cell Mol Life Sci 68:3175–3199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Midwood KS et al (2016) Tenascin-C at a glance. J Cell Sci 129:4321–4327

    CAS  PubMed  Google Scholar 

  • Milewicz DM, Grossfield J, Cao SN, Kielty C, Covitz W, Jewett T (1995) A mutation in FBN1 disrupts profibrillin processing and results in isolated skeletal features of the Marfan syndrome. J Clin Invest 95:2373–2378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mimura Y, Ihn H, Jinnin M, Assano Y, Yamane K, Tamaki K (2005) Constitutive thrombospondin-1 overexpression contributes to autocrine transforming growth factor-beta signalin in cultured scleroderma fibroblasts. Am J Pathol 166:1451–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miner JH, Yurchenco PD (2004) Laminin functions in tissue morphogenesis. Annu Rev Cell Dev Biol 20:255–284

    Article  CAS  PubMed  Google Scholar 

  • Mithieux SM, Weiss AS (2005) Elastin. Adv Protein Chem 70:437–461

    Article  CAS  PubMed  Google Scholar 

  • Mithieux SM, Wise SG, Weiss AS (2012) Tropoelastin — a multifaceted naturally smart material. Adv Drug Del Rev. (in press)

    Google Scholar 

  • Molloy TJ, de Bock CE, Wang Y, Murrell GA (2006) Gene expression changes in SNAP-stimulated and iNOS-transfected tenocytes--expression of extracellular matrix genes and its implications for tendon-healing. J Orthop Res 24:1869–1882

    Article  CAS  PubMed  Google Scholar 

  • Montanaro L et al (2006) Evidence of a linkage between matrilin-1 gene (MATN1) and idiopathic scoliosis. Scoliosis 1:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Mosher DF, Adams JC (2012) Adhesion-modulating/matricellular ECM protein families: a structural, functional and evolutionary appraisal. Matrix Biol 31:155–161

    Article  CAS  PubMed  Google Scholar 

  • Muiznieks LD, Weiss AS, Keeley FW (2010) Structural disorder and dynamics of elastin. Biochem Cell Biol 88:239–250

    Article  CAS  PubMed  Google Scholar 

  • Murphy-Ullrich JE, Iozzo RV (2012) Thrombospondins in physiology and disease: new tricks for old dogs. Matrix Biol 31:152–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy-Ullrich JE, Poczatek M (2000) Activation of latent TGF-beta by thrombospondin-1: mechanism and physiology. Cytokine Growth Factor Rev 11

    Google Scholar 

  • Nakamura T (2018) Role of short fibulins, a family of matricellular proteins, in lung matrx assembly and disease. Matrix Biol 73:21–33

    Article  CAS  PubMed  Google Scholar 

  • O’Connor WN, Davis JB Jr, Geissler R, Cottrill CM, Noonan JA, Todd EP (1985) Supravalvular aortic stenosis. Clinical and pathological observations in six patients. Arch Pathol Lab Med 109:179–185

    PubMed  Google Scholar 

  • Okamoto H, Imanaka-Yoshida K (2012) Matricellular proteins: new molecular targets to prevent heart failure. Cardiovasc Ther 30:e198–e209

    Article  CAS  PubMed  Google Scholar 

  • Oldberg Å, Antonssen P, Lindholm K, Heinegård D (1992) COMP (cartilage oligomeric matrix protein) is structurally related to thrombospondins. J Biol Chem 267:22346–22350

    Article  CAS  PubMed  Google Scholar 

  • Page TH, Charles PJ, Piccinini AM, Nicolaidou V, Taylor PC, Midwood KS (2012) Raised circulating tenascin-C in rheumatoid arthritis. Arthritis Res Ther 14:R260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulsson M, Matrilins WR (2018) Methods Cell Biol 143:429–446

    Article  CAS  PubMed  Google Scholar 

  • Pérez-García S et al (2020) Profile of matrix-remodeling proteinases in osteoarthritis: impact of fibronectin. Cell 9:40

    Article  Google Scholar 

  • Perrotta I, Russo E, Camastra C, Filice G, Di Mizio G, Colosimo F, Ricci P, Tripepi S, Amorosi A, Triumbari F, Donato G (2011) New evidence for a critical role of elastin in calcification of native heart valves: immunohistochemical and ultrastructural study with literature review. Histopathology 59:504–513

    Article  PubMed  Google Scholar 

  • Posey KL, Hecht JT (2008) The role of cartilage oligomeric matrix protein (COMP) in skeletal disease. Curr Drug Targets 9:869–877

    Article  CAS  PubMed  Google Scholar 

  • Posey KL, Coustry F, Hecht JT (2018) Cartilage oligomeric matrix protein: COMPopathies and beyond. Matrix Biol 71-72:161–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potts JR, Campbell ID (1994) Fibronectin structure and assembly. Curr Opin Cell Biol 6:648–655

    Article  CAS  PubMed  Google Scholar 

  • Raghunath M, Putnam EA, Ritty T, Hamstra D, Park ES, Tschodrich-Rotter M, Peters P, Rehemtulla A, Milewicz DM (1999) Carboxy-terminal conversion of profibrillin to fibrillin at a basic site by PACE/furin-like activity required for incorporation in the matrix. J Cell Sci 112:1093–1100

    Article  CAS  PubMed  Google Scholar 

  • Ramirez F, Dietz HC (2007) Fibrillin-rich microfibrils: structural determinants of morphogenetic and homeostatic events. J Cell Physiol 213:326–330

    Article  CAS  PubMed  Google Scholar 

  • Ramirez F, Sakai LV (2010) Biogenesis and function of fibrillin assemblies. Cell Tissue Res 339:71–82

    Article  CAS  PubMed  Google Scholar 

  • Riessen R, Isner JM, Blessing E, Loushin C, Nikol S, Wight TN (1994) Regional differences in the distribution of the proteoglycans biglycan and decorin in the extracellular matrix of atherosclerotic and restenotic human coronary arteries. Am J Pathol 144:962–974

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riessen R, Fenchel M, Chen H, Axel DL, Karsch KR, Lawler J (2001) Cartilage oligomeric matrix protein (thrombospondin-5) is expressed by human vascular smooth muscle cells. Arteriosc Thromb Vasc Biol 21:47–54

    Article  CAS  Google Scholar 

  • Roark EF et al (1995) The association of human fibulin-1 with elastic fibers: an immunohistological, ultrastructural, and RNA study. J Histochem Cytochem 43:401–411

    Article  CAS  PubMed  Google Scholar 

  • Robert DD, Miller TW, Rogers NM, Yao M, Isenberg JS (2012) The matricellular protein thrombospondin-1 globally regulates cardiovascular function and responses to stress via CD47. Matrix Biol 31:162–169

    Article  Google Scholar 

  • Robertson I, Jensen S, Handford P (2011) TB domain proteins: evolutionary insights into the multifaceted roles of fibrillins and LTBPs. Biochem J 433:263–276

    Article  CAS  PubMed  Google Scholar 

  • Robinson PN, Arteaga-Solis E, Baldock C, Collod-Béroud G, Booms P, De Paepe A, Dietz HC, Guo G, Handford PA, Judge DP, Kielty CM, Loeys B, Milewicz DM, Ney A, Ramirez F, Reinhardt DP, Tiedemann K, Whiteman P, Godfrey M (2006) The molecular genetics of Marfan syndrome and related disorders. J Med Genet 43:769–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rock MJ, Holden P, Horton WA, Cohn DH (2010) Cartilage oligometric matrix protein promotes cell attachment via two independent mechanisms involving CD47 and αVβ3 integrin. Mol Cell Biochem 338:215–224

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Revenga L, Iranzo P, Badenas C, Puig S, Carrio A, Mila M (2004) A novel elastin gene mutation resulting in an autosomal dominant from of cutis laxa. Arch Dermatol 149:1135–1139

    Google Scholar 

  • Rogers NM, Yao M, Novelli EM, Thomson AW, Roberts DD, Isenberg JS (2012) Activated CD47 regulates multiple vascular and stress responses: implications for acute kidney injury and its management. Am J Physiol Renal Physiol 303:F1117–F1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg K, Olsson H, Mörgelin M, Heinegård D (1998) Cartilage oligomeric matrix protein shows high affinity zinc-dependent interaction with triple helical collagen. J Biol Chem 273:20397–20403

    Article  CAS  PubMed  Google Scholar 

  • Sabatier L, Chen D, Fagotto-Kaufmann C, Hubmacher D, McKee MD, Annis DS, Mosher DF, Reinhardt DP (2009) Fibrillin assembly requires fibronectin. Mol Biol Cell 20:846–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahni A, Francis CW (2000) Vascular endothelial growth factor binds to fibrinogen and fibrin and stimulates endothelial cell proliferation. Blood 96:3772–3778

    Article  CAS  PubMed  Google Scholar 

  • Sahni A, Odrljin T, Francis CW (1998) Binding of basic fibroblast growth factor to fibrinogen and fibrin. J Biol Chem 273:7554–7559

    Article  CAS  PubMed  Google Scholar 

  • Sarbacher CA, Halper JT (2019) Connective tissue and age-related diseases. Subcell Biochem 91:281–310

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T et al (1997) Dimer model for the microfibrillar protein fibulin-2 and identification of the connecting disulfide bridge. EMBO J 16:3035–3043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato N, Nakamura M, Chikama T, Nishida T (1999) Abnormal deposition of laminin and type IV collagen at corneal epithelial basement membrane during wound healing in diabetic rats. Jpn J Ophthalmol 43:343–347

    Article  CAS  PubMed  Google Scholar 

  • Sato F, Wachi H, Ishida M, Nonaka R, Onoue S, Urban Z, Starcher BC, Seyama Y (2007) Distinct steps of cross-linking, self-association, and maturation of tropoelastin are necessary for elastic fiber formation. J Mol Biol 369:841–851

    Article  CAS  PubMed  Google Scholar 

  • Schalkwijk J et al (2001) A recessive form of the Ehlers-Danlos syndrome caused by tenascin-X deficiency. N Engl J Med 345(16):1167–1175

    Article  CAS  PubMed  Google Scholar 

  • Schwill S, Seppelt P, Grünhagen J, Ott CE, Jugold M, Ruhparwar A, Robinson PN, Karck M, Kallenbach K (2013) The fibrillin-1 hypomorphic mgR/mgR murine model of Marfan syndrome shows severe elastolysis in all segments of the aorta. J Vasc Surg. in press

    Google Scholar 

  • Shimizu R, Saito R, Hoshino K, Ogawa K, Negishi T, Nishimura J, Mitsui N, Osawa M, Ohashi H (2010) Severe Peters Plus syndrome-like phenotype with anterior eye staphyloma and hypoplastic left heart syndrome: proposal of a new syndrome. Congenit Anom (Kyoto) 50:197–199

    Article  Google Scholar 

  • Singh P, Schwarzbauer JE (2012) Fibronectin and stem cell differentiation – lessons from chondrogenesis. J Cell Sci 125:3703–3712

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith RKW, Zunino L, Webbon PM, Heinegård D (1997) The distribution of cartilage oligomeric matrix protein (COMP) in tendon and its variation with tendon site, age and load. Matrix Biol 16:255–271

    Article  CAS  PubMed  Google Scholar 

  • Smith MR, Wright IM, Minshall GJ, Dudhia J, Verheyen K, Heinegård D, Smith RK (2011) Increased cartilage oligomeric matrix protein concentrations in equine digital flexor tendon sheath synovial fluid predicts interthecal tendon damage. Vet Surg 40:54–58

    Article  PubMed  Google Scholar 

  • Södersten F, Hultenby K, Heinegård D, Johnston C, Ekman S (2013) Immunolocalization of collagens (I and III) and cartilage oligomeric matrix protein in the normal and injured equine superficial digital flexor tendon. Connect Tissue Res 54:62–69

    Article  PubMed  Google Scholar 

  • Sweetwyne MT, Murphy-Ullrich JE (2012) Thrombospondin1 in tissue repair and fibrosis: TGF-β-dependent and independent mechanisms. Matrix Biol 31:178–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi S, Leiss M, Moser M, Ohashi T, Kitao T, Heckmann D, Pfeifer A, Kessler H, Takagi J, Erickson HP, Fässler R (2007) The RGD motif in fibronectin is essential for development but dispensable for fibril assembly. J Cell Biol 178:167–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamarina NA, McMillan WD, Shively VP, Pearce WH (1999) Expression of matrix metalloproteinases and their inhibitors in anuerysm and normal aorta. Surgery 122:264–271

    Article  Google Scholar 

  • Tassabehji M, Metcalfe K, Hurst J, Ashcroft GS, Kielty C, Wilmot C, Donnai D, Read AP, Jones CJP (1998) An elastin gene mutation producing abnormal tropoelastin and abnormal elastic fibres in a patient with autodomal dominant cutis laxa. Hum Mol Genet 7:1021–1028

    Article  CAS  PubMed  Google Scholar 

  • Taylor SH, Al-Youha S, Van Agtmael T, Lu Y, Wong J, McGrouther DA, Kadler KE (2011) Tendon is covered by a basement membrane epithelium that is required for cell retention and the prevention of adhesion formation. PLoS One 6:e16337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson J et al (2019) Fibrillin microfibrils and elastic fibre proteins: functional interactions and extracellular regulation of growth factors. Semin Cell Dev Biol 89:109–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timpl R et al (2003) Fibulins: a versatile family of extracellular matrix proteins. Nat Rev Mol Cell Biol 4:479–489

    Article  CAS  PubMed  Google Scholar 

  • Todorovich-Hunter L, Johnson D, Ranger P, Keeley F, Rabinovitch M (1988) Altered elastin and collagen synthesis associated with progressive pulmonary hypertension induced by monocrotaline. A biochemical and ultrastructural study. Lab Investig 58:184–195

    CAS  PubMed  Google Scholar 

  • Tsuda T (2018) Extracellular interactions between fibulins and transforming growth factor (TGF)-β in physiological and pathological conditions. Int J Mol Sci 19

    Google Scholar 

  • Tsuda T, Wang H, Timpl R, Chu ML (2001) Fibulin-2 expression marks transformed mesenchymal cells in developing cardiac valves, aortic arch vessels and coronary vessels. Dev Dyn 222:89–100

    Article  CAS  PubMed  Google Scholar 

  • Tsunezumi J et al (2018) Fibulin-7, a heparin binding matricellular protein, promotes renal tubular calcification in mice. Matrix Biol 74:5–20

    Article  CAS  PubMed  Google Scholar 

  • Tucker RP, Chiquet-Ehrismann R (2009) The regulation of tenascin expression by tissue microenvironments. Biochim Biophys Acta 1793:888–892

    Article  CAS  PubMed  Google Scholar 

  • Tucker RP, Drabikowski K, Hess JF, Ferralli J, Chiquet-Ehrismann R, Adams JC (2006) Phylogenetic analysis of the tenascin gene family: evidence of origin early in the chordate lineage. BMC Evol Biol 6:60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urban Z, Michels VV, Thibodeau SN, Davis EC, Bonnefont J-P, Munnich A, Eyskens B, Gewillig M, Devriendt K, Boyd CD (2000) Isolated supravalvular aortic stenosis: functional haploinsufficiency of the elastin gene as a result of nonsense-mediated decay. Hum Genet 106:577–588

    Article  CAS  PubMed  Google Scholar 

  • Urban Z et al (2009) Mutations in LTBP4 cause a syndrome of impaired pulmonary, gastrointestinal, genitourinary, musculoskeletal, and dermal development. Am J Hum Genet 85:593–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valcourt U et al (2015) Tenascin-X: beyond the architectural function. Cell Adhes Migr 9(1–2):154–165

    Article  CAS  Google Scholar 

  • Veit G et al (2006) Collagen XII interacts with avian tenascin-X through its NC3 domain. J Biol Chem 281(37):27461–27470

    Article  CAS  PubMed  Google Scholar 

  • Wachi H, Nonaka R, Sato F, Shibata-Sato K, Ishida M, Iketani S, Maeda I, Okamoto K, Urban Z, Onoue S, Seyama Y (2008) Characterization of the molecular interaction between tropoelastin and DANCE/fibulin-5. J Biochem 143:633–639

    Article  CAS  PubMed  Google Scholar 

  • Wagenseil JE, Mecham RP (2009) Vascular extracellular matrix and arterial mechanics. Physiol Rev 89:957–989

    Article  CAS  PubMed  Google Scholar 

  • Wagenseil JE, Mecham RP (2012) Elastin in large artery stiffness and hypertension. J Cardiovasc Transl Res 5:264–273

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagenseil JE, Mercham RP (2009) Vascular extracellular matrix and arterial mechanisms. Physiol Rev 89:957–989

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Wang X, Kong W (2010) ADAMTS-7, a novel proteolytic culprit in vascular remodeling. Sheng Li Xue Bao 62:285–294

    CAS  PubMed  Google Scholar 

  • White ES, Muro AF (2011) Fibronectin splice variants. Understanding their multiple roles in health and diases using engineered mouse models. IUBMB Life 63:538–546

    Article  CAS  PubMed  Google Scholar 

  • Whittaker CA, Hynes RO (2002) Distribution and evolution of of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and and elsewhere. Mol Biol Cell 13:3369–3387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolinsky H (1970) Response of the rat aortic media to hypertension. Morphological and chemical studies. Circ Res 26:507–522

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa H, Davis EC (2010) Unraveling the mechanism of elastic fiber assembly: the roles of short fibulins. Int J Biochem Cell Biol 42:1084–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanagisawa H, Schluterman MK, Brekken RA (2009) Fibulin-5, an integrin-binding matricellular protein: its function in development and disease. J Cell Commun Signal 3:337–347

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeo GC, Keeley FW, Weiss AS (2011) Coacervation of tropoelastin. Adv Colloid Interface Science 167:94–103

    Article  CAS  Google Scholar 

  • Zhang H, Apfelroth SD, Hu W, Davis EC, Sanguineti C, Bonadio J, Mecham RP, Ramirez F (1994) Structure and expression of fibrillin-2, a novel microfibrillar component preferentially located in elastic matrices. J Cell Biol 124:855–863

    Article  CAS  PubMed  Google Scholar 

  • Zhang HY, Timpl R, Sasaki T, Chu ML, Ekblom P (1996) Fibulin-1 and fibulin-2 expression during organogenesis in the developing mouse embryo. Dev Dyn 205:348–364

    Article  CAS  PubMed  Google Scholar 

  • Zheng Q, Davis EC, Richardson JA, Starcher BC, Li T, Gerard RD, Yanagisawa H (2007) Molecular analysis of fibulin-5 function during de novo synthesis of elastic fibers. Mol Cell Biol 27:1083–1095

    Article  CAS  PubMed  Google Scholar 

  • Zilberberg L et al (2015) Genetic analysis of the contribution of LTBP-3 to thoracic aneurysm in Marfan syndrome. Proc Natl Acad Sci U S A 112:14012–14017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslava Halper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Halper, J. (2021). Basic Components of Connective Tissues and Extracellular Matrix: Fibronectin, Fibrinogen, Laminin, Elastin, Fibrillins, Fibulins, Matrilins, Tenascins and Thrombospondins. In: Halper, J. (eds) Progress in Heritable Soft Connective Tissue Diseases. Advances in Experimental Medicine and Biology, vol 1348. Springer, Cham. https://doi.org/10.1007/978-3-030-80614-9_4

Download citation

Publish with us

Policies and ethics