Skip to main content

Advertisement

Log in

Effects of mechanical strain on human mesenchymal stem cells and ligament fibroblasts in a textured poly(l-lactide) scaffold for ligament tissue engineering

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The purpose of this study was to prove the effect of cyclic uniaxial intermittent strain on the mRNA expression of ligament-specific marker genes in human mesenchymal stem cells (MSC) and anterior cruciate ligament-derived fibroblasts (ACL-fibroblasts) seeded onto a novel textured poly(l-lactide) scaffold (PLA scaffold). Cell-seeded scaffolds were mechanically stimulated by cyclic uniaxial stretching. The expression of ligament matrix gene markers: collagen types I and III, fibronectin, tenascin C and decorin, as well as the proteolytic enzymes matrix metalloproteinase MMP-1 and MMP-2 and their tissue specific inhibitors TIMP-1 and TIMP-2 was investigated by analysing the mRNA expression using reverse transcriptase polymerase chain reaction and related to the static control. In ACL-fibroblasts seeded on PLA, mechanical load induced up-regulation of collagen types I and III, fibronectin and tenascin C. No effect of mechanical stimulation on the expression of ligament marker genes was found in undifferentiated MSC seeded on PLA. The results indicated that the new textured PLA scaffold could transfer the mechanical load to the ACL-fibroblasts and improved their ligament phenotype. This scaffold might be suitable as a cell-carrying component of ACL prostheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Laurencin CT, Freeman JW. Ligament tissue engineering: an evolutionary materials science approach. Biomaterials. 2005;26:7530–6.

    Article  CAS  Google Scholar 

  2. Pertigliano FA, McAllister DR, Wu BM. Tissue engineering for anterior cruciate ligament reconstruction: a review of current strategies. Arthroscopy. 2006;22:441–51.

    Article  Google Scholar 

  3. Dourte LM, Kuntz A, Soslowsky LJ. Twenty-five years of tendon and ligament research. J Orthop Res. 2008;26:1297–305.

    Article  Google Scholar 

  4. Viera AC, Guedes RM, Marques AT. Development of ligament tissue biodegradable devices: a review. J Biomech. 2009;42:2421–30.

    Article  Google Scholar 

  5. Hogan MV, Bagayoko N, James R, Starnes T, Katz A, Chhabra AB. Tissue engineering solutions for tendon repair. J Am Acad Orthop Surg. 2011;19:134–42.

    Google Scholar 

  6. Shearn JT, Kinneberg KRC, Dyment NA, Galloway MT, Kenter K, Wylie C, Butler DL. Tendon tissue engineering: progress, challenges, and translation to the clinic. J Musculoskelet Neuronal Interact. 2011;11:163–73.

    CAS  Google Scholar 

  7. Heckmann L, Schlenker HJ, Fiedler J, Brenner RE, Dauner M, Bergenthal G, Mattes T, Claes L, Ignatius A. Human mesenchymal progenitor cell response to a novel textured poly(l-lactide) scaffold for ligament tissue engineering. J Biomed Mater Res A Appl Biomater. 2007;81B:82–90.

    Article  CAS  Google Scholar 

  8. Dunn MG, Liesch JB, Tiku ML, Zawadsky JP. Development of fibroblast-seeded ligament analogs for ACL reconstruction. J Biomed Mater Res. 1995;29:1363–71.

    Article  CAS  Google Scholar 

  9. Ge Z, Goh JC, Lee EH. Selection of cell source for ligament tissue engineering. Cell Transplant. 2005;14:573–83.

    Article  Google Scholar 

  10. Lee EH, Hui JH. The potential of stem cells in orthopaedic surgery. J Bone Joint Surg Br. 2006;88:841–51.

    Article  CAS  Google Scholar 

  11. Van Eijk F, Saris DB, Riesle J, Willems WJ, Van Blitterswijk CA, Verbaut AJ. Tissue engineering of ligaments: a comparison of bone marrow stromal cells, anterior cruciate ligaments, and skin fibroblasts as cell source. Tissue Eng. 2004;10:893–903.

    Article  Google Scholar 

  12. Yin Z, Chen X, Chen JL, Ouyang HW. Stem cells for tendon tissue engineering and regeneration. Expert Opin Biol Ther. 2010;10:689–700.

    Article  CAS  Google Scholar 

  13. Bernhardt HA, Cosgriff-Hernandez EM. The role of mechanical loading in ligament tissue engineering. Tissue Eng Part B. 2009;15:467–75.

    Article  Google Scholar 

  14. Kuo CK, Marturano JE, Tuan RS. Novel strategies in tendon and ligament tissue engineering: advanced biomaterials and regeneration motifs. Sports Med Arthrosc Rehabil Ther Technol. 2010;2:20.

    Article  Google Scholar 

  15. Altman GH, Horan RL, Martin I, Farhadi J, Stark PR, Volloch V, Richmond JC, Vunjak-Novakovic G, Kaplan DL. Cell differentiation by mechanical stress. FASEB J. 2002;16:270–2.

    CAS  Google Scholar 

  16. Butler DL, Juncosa-Melvin N, Boivin GP, Galloway MT, Shearn JT, Gooch C, Awad H. Functional tissue engineering for tendon repair: a multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation. J Orthop Res. 2008;26:1–9.

    Article  Google Scholar 

  17. Chen J, Horan RL, Bramono D, Moreau J, Wang Y, Geuss LR, Collette AL, Volloch V, Altman GH. Monitoring mesenchymal stromal cell developmental stage to apply on-time mechanical stimulation for ligament tissue engineering. Tissue Eng. 2006;12:3085–95.

    Article  CAS  Google Scholar 

  18. Juncosa-Melvin N, Matlin KS, Holdcraft RW, Nirmalanandhan VS, Butler DL. Mechanical stimulation increase collagen type I and collagen type III gene expression of stem cell-collagen sponge constructs for patella tendon repair. Tissue Eng. 2007;13:1219–26.

    Article  CAS  Google Scholar 

  19. Moreau JE, Bramono D, Horan RL, Kaplan DL, Altman GH. Sequential biochemical and mechanical stimulation in the development of tissue-engineered ligaments. Tissue Eng Part A. 2008;14:1161–72.

    Article  CAS  Google Scholar 

  20. Petrigliano FA, English CS, Barba D, Esmende S, Wu BM, MacAllister DR. The effects of local bFGF release and uniaxial strain on cellular adaptation and gene expression in a 3D environment: implications for ligament tissue engineering. Tissue Eng. 2007;13:2721–31.

    Article  CAS  Google Scholar 

  21. Dürselen L, Dauner M, Hierlemann H, Planck H, Claes LE, Ignatius A. Resorbable polymer fibers for ligament augmentation. J Biomed Mater Res. 2001;58:666–72.

    Article  Google Scholar 

  22. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.

    Article  CAS  Google Scholar 

  23. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop DJ, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006;8:315–7.

    Article  CAS  Google Scholar 

  24. Ignatius A, Blessing H, Liedert A, Schmidt C, Neidlinger-Wilke C, Kaspar D, Friemert B, Claes L. Tissue engineering of bone: effects of mechanical strain on osteoblastic cells in type I collagen matrices. Biomaterials. 2005;26:311–8.

    Article  CAS  Google Scholar 

  25. Beynnon BD, Fleming BC. Anterior cruciate ligament strain in vivo: a review of previous work. J Biomech. 1998;31:519–25.

    Article  CAS  Google Scholar 

  26. Mikuni-Takagaki Y, Suzuki Y, Kawase T, Saito S. Distinct responses of different populations of bone cells to mechanical stress. Endocrinology. 1996;137:2028–35.

    Article  CAS  Google Scholar 

  27. Kraft K, Bindslev DA, Melsen B, Abdallah BM, Kassem M, Klein-Nulend J. Mechanosensitivity of dental pulp stem cells is related to their osteogenic maturity. Eur J Oral Sci. 2010;118:29–38.

    Article  CAS  Google Scholar 

  28. Chokalingam K, Juncosa-Melvin N, Hunter SA, Gooch C, Frede C, Floret J, Bradica G, Wenstrup R, Butler DL. Tensile stimulation of murine stem cell-collagen sponge constructs increases collagen type I gene expression and linear stiffness. Tissue Eng Part A. 2009;15:2561–70.

    Article  CAS  Google Scholar 

  29. Dorski DM, Levenston ME, Temenoff JS. Cyclic tensile culture promotes fibroblastic differentiation of marrow stromal cells encapsulated in poly(ethylene glycol)-based hydrogels. Tissue Eng Part A. 2010;16:3457–66.

    Article  Google Scholar 

  30. Nöth U, Schupp K, Heymer A, Kall S, Jacob F, Schütze N, Bauman B, Barthel T, Eulert J, Hendrich C. Anterior cruciate ligament constructs fabricated from human mesenchymal stem cells in collagen type I hydrogel. Cytotherapy. 2005;7:447–55.

    Article  Google Scholar 

  31. Chen YJ, Huang CH, Lee YT, Chen MH, Young TH. Effects of cyclic stretching on the mRNA expression of tendon/ligament-related and osteoblasts-specific genes in human mesenchymal stem cells. Connect Tissue Res. 2008;49:7–14.

    Article  CAS  Google Scholar 

  32. Phinney DG, Koppen G, Righter W, Webster S, Tremain N, Prockop DJ. Donor variation in the growth properties and osteogenic potential of human marrow stromal cells. J Cell Biochem. 1999;75:424–36.

    Article  CAS  Google Scholar 

  33. Sidappa R, Licht R, van Blitterswijk C, de Boer J. Donor variation and loss of multipotency during in vitro expansion of human mesenchymal stem cells for bone tissue engineering. J Orthop Res. 2007;25:1029–41.

    Article  Google Scholar 

  34. Hannafin JA, Attia JA, Henshaw R, Warren RF, Bhargava MM. Effect of cyclic strain and plating matrix on cell proliferation and integrin expression by ligament fibroblasts. J Orthop Res. 2006;24:149–56.

    Article  CAS  Google Scholar 

  35. Yang G, Crawford RC, Wang JH-C. Proliferation and collagen production of human patellar tendon fibroblasts in response to cyclic uniaxial stretching in serum-free conditions. J Biomech. 2004;37:1543–50.

    Article  Google Scholar 

  36. Zeichen J, van Griensven M, Bosch U. The proliferative response of isolated tendon fibroblasts to cyclic biaxial mechanical strain. Am J Sports Med. 2000;28:888–92.

    CAS  Google Scholar 

  37. Kim SG, Akaike T, Sasagaw T, Atomi Y, Kurosawa H. Gene expression of type I and type III collagen by mechanical stretch in anterior cruciate ligament cells. Cell Struct Funct. 2002;27:139–44.

    Article  CAS  Google Scholar 

  38. Tetsunaga T, Furumatsu T, Abe N, Nishda K. Mechanical stretch stimulates integrin αVβ3-mediated collagen expression in human anterior cruciate ligament cells. J Biomech. 2009;42:2097–103.

    Article  Google Scholar 

  39. Zhang J, Wang JH-C. Mechanobiological response of tendon stem cells: implications of tendon homeostasis and pathogenesis of tendinopathy. J Orthop Res. 2010;28:639–43.

    Article  Google Scholar 

  40. Lee CH, Shin HJ, Cho IH, Kang YM, Kim IA, Park KD, Shin JW. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials. 2005;26:1261–70.

    Article  CAS  Google Scholar 

  41. Sawaguchi N, Majima T, Funakoshi T, Shimode K, Harada K, Minami A, Nishimura S. Effect of cyclic tree-dimensional strain on cell prloiferation and collagen synthesis of fibroblasts-seeded chitosan-hyaluronan hybrid polymer fiber. J Orthop Sci. 2010;15:569–77.

    Article  CAS  Google Scholar 

  42. Lee J, Guarino V, Gloria A, Ambrosio L, Tae G, Kim YH, Kim HS. Regeneration of Achilles’ tendon: the role of dynamic stimulation for enhanced cell proliferation and mechanical properties. J Biomater Sci. 2010;21:1173–90.

    Article  CAS  Google Scholar 

  43. Jiang Y, Liu H, Li H, Wang F, Chen K, Zhou G, Zhang W, Ye M, Cao Y, Liu W, Zou H. A proteomic analysis of engineered tendon formation under dynamic mechanical loading in vitro. Biomaterials. 2011;32:4085–95.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Government of Baden-Württemberg for supporting this study in the context of the Network of Excellence for Biomaterials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludwika Kreja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreja, L., Liedert, A., Schlenker, H. et al. Effects of mechanical strain on human mesenchymal stem cells and ligament fibroblasts in a textured poly(l-lactide) scaffold for ligament tissue engineering. J Mater Sci: Mater Med 23, 2575–2582 (2012). https://doi.org/10.1007/s10856-012-4710-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4710-7

Keywords

Navigation