Skip to main content

Description and Management of Radiotherapy-Induced Long-Term Effects

  • Chapter
  • First Online:
Survivorship Care for Cancer Patients
  • 582 Accesses

Abstract

Radiation therapy (RT) is involved in about 50% of cures. However, overall, after a median follow-up of 2.3 years, 3–5% of the treated patients are estimated to suffer from late toxicity that can cause potentially serious sequelae—in absence of therapeutic deviation. These toxicities are essentially cardiovascular, renal, endocrine, and musculoskeletal but also include secondary radiation-induced malignancies. The incidence of late complications continued to increase with the duration of follow-up without reaching a plateau. These late effects are characterized by a clinical latency during which intricated cellular and tissue events take place, as described in the second section. Several patient- and treatment-related cofactors are associated with late effects occurrence including individual radiosensitivity and radiosensitive syndromes. In the fourth section, we provide a clinical description of “deterministic” late effects according to organ/tissue location and radiosensitivity with a specific emphasis on pediatrics. After reviewing the stochastic late effects, we give insights into the current management of radiotherapy-induced sequelae with curative and preventive approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    SF2 stands for surviving fraction after 2 Gy; marker of individual radiosensitivity; the lower the value, the more radiosensitive the individual (normal value >80%).

References

  1. IARC. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Lyon, France: International Agency for Research on Cancer; 2020.

    Google Scholar 

  2. Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 2019;69(5):363–85.

    Article  Google Scholar 

  3. Ward E, DeSantis C, Robbins A, Kohler B, Jemal A. Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin. 2014;64(2):83–103.

    Article  PubMed  Google Scholar 

  4. Rubin P, Casarett GW. Clinical radiation pathology as applied to curative radiotherapy. Cancer. 1968;22(4):767–78.

    Article  CAS  PubMed  Google Scholar 

  5. Burman C, Kutcher GJ, Emami B, Goitein M. Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys. 1991;21(1):123–35.

    Article  CAS  PubMed  Google Scholar 

  6. Authors on behalf of I, Stewart FA, Akleyev AV, Hauer-Jensen M, Hendry JH, Kleiman NJ, et al. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs—threshold doses for tissue reactions in a radiation protection context. Ann ICRP. 2012;41(1–2):1–322.

    Google Scholar 

  7. Marks LB, Yorke ED, Jackson A, Ten Haken RK, Constine LS, Eisbruch A, et al. Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S10–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Constine LS, Ronckers CM, Hua CH, Olch A, Kremer LCM, Jackson A, et al. Pediatric Normal Tissue Effects in the Clinic (PENTEC): an international collaboration to analyse normal tissue radiation dose-volume response relationships for paediatric cancer patients. Clin Oncol (R Coll Radiol). 2019;31(3):199–207.

    Article  CAS  Google Scholar 

  9. Mohanti BK, Bansal M. Late sequelae of radiotherapy in adults. Support Care Cancer. 2005;13(10):775–80.

    Article  PubMed  Google Scholar 

  10. UNSCEAR. UNSCEAR 2008 report vol. II: effects of ionizing radiation. Vienna: United Nations; 2008. 320 p.

    Google Scholar 

  11. Oeffinger KC, Mertens AC, Sklar CA, Kawashima T, Hudson MM, Meadows AT, et al. Chronic health conditions in adult survivors of childhood cancer. N Engl J Med. 2006;355(15):1572–82.

    Article  CAS  PubMed  Google Scholar 

  12. Hudson MM, Mertens AC, Yasui Y, Hobbie W, Chen H, Gurney JG, et al. Health status of adult long-term survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. JAMA. 2003;290(12):1583–92.

    Article  CAS  PubMed  Google Scholar 

  13. Dueck AC, Mendoza TR, Mitchell SA, Reeve BB, Castro KM, Rogak LJ, et al. Validity and reliability of the US National Cancer Institute’s Patient-Reported Outcomes Version of the Common Terminology Criteria for Adverse Events (PRO-CTCAE). JAMA Oncol. 2015;1(8):1051–9.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hill-Kayser CE, Vachani C, Hampshire MK, Jacobs LA, Metz JM. An internet tool for creation of cancer survivorship care plans for survivors and health care providers: design, implementation, use and user satisfaction. J Med Internet Res. 2009;11(3):e39.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Liu L, O’Donnell P, Sullivan R, Katalinic A, Moser L, de Boer A, et al. Cancer in Europe: death sentence or life sentence? Eur J Cancer. 2016;65:150–5.

    Article  PubMed  Google Scholar 

  16. Baumann M, Holscher T, Begg AC. Towards genetic prediction of radiation responses: ESTRO’s GENEPI project. Radiother Oncol. 2003;69(2):121–5.

    Article  PubMed  Google Scholar 

  17. Dorr W. Radiobiology of tissue reactions. Ann ICRP. 2015;44(1 Suppl):58–68.

    Article  CAS  PubMed  Google Scholar 

  18. Rodemann HP, Blaese MA. Responses of normal cells to ionizing radiation. Semin Radiat Oncol. 2007;17(2):81–8.

    Article  PubMed  Google Scholar 

  19. Dorr W, Hendry JH. Consequential late effects in normal tissues. Radiother Oncol. 2001;61(3):223–31.

    Article  CAS  PubMed  Google Scholar 

  20. Withers HR, Taylor JM, Maciejewski B. Treatment volume and tissue tolerance. Int J Radiat Oncol Biol Phys. 1988;14(4):751–9.

    Article  CAS  PubMed  Google Scholar 

  21. Common Terminology Criteria for Adverse Events (CTCAE) v5.0: U.S. Department of Health and Human Services; 2017. https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_5x7.pdf.

  22. Vogin G. [Radiosensitivity, radiocurability and DNA repair]. Cancer Radiother 2011;15(4):294–306.

    Google Scholar 

  23. Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science (New York, NY). 2007;316(5828):1160–6.

    Article  CAS  Google Scholar 

  24. San Filippo J, Sung P, Klein H. Mechanism of eukaryotic homologous recombination. Annu Rev Biochem. 2008;77:229–57.

    Article  CAS  PubMed  Google Scholar 

  25. Lieber MR. The mechanism of human nonhomologous DNA end joining. J Biol Chem. 2008;283(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  26. Mirzayans R, Andrais B, Scott A, Wang YW, Murray D. Ionizing radiation-induced responses in human cells with differing TP53 status. Int J Mol Sci. 2013;14(11):22409–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Bentzen SM. Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat Rev Cancer. 2006;6(9):702–13.

    Article  CAS  PubMed  Google Scholar 

  28. Yarnold J, Brotons MC. Pathogenetic mechanisms in radiation fibrosis. Radiother Oncol. 2010;97(1):149–61.

    Article  CAS  PubMed  Google Scholar 

  29. Wynn TA. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol. 2004;4(8):583–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Martin M, Lefaix J, Delanian S. TGF-beta1 and radiation fibrosis: a master switch and a specific therapeutic target? Int J Radiat Oncol Biol Phys. 2000;47(2):277–90.

    Article  CAS  PubMed  Google Scholar 

  31. Rubin P, Johnston CJ, Williams JP, McDonald S, Finkelstein JN. A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis. Int J Radiat Oncol Biol Phys. 1995;33(1):99–109.

    Article  CAS  PubMed  Google Scholar 

  32. Mikkelsen RB, Wardman P. Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene. 2003;22(37):5734–54.

    Article  CAS  PubMed  Google Scholar 

  33. Wang M, Saha J, Hada M, Anderson JA, Pluth JM, O’Neill P, et al. Novel Smad proteins localize to IR-induced double-strand breaks: interplay between TGFbeta and ATM pathways. Nucleic Acids Res. 2013;41(2):933–42.

    Article  CAS  PubMed  Google Scholar 

  34. Burnet NG, Johansen J, Turesson I, Nyman J, Peacock JH. Describing patients’ normal tissue reactions: concerning the possibility of individualising radiotherapy dose prescriptions based on potential predictive assays of normal tissue radiosensitivity. Steering Committee of the BioMed2 European Union Concerted Action Programme on the Development of Predictive Tests of Normal Tissue Response to Radiation Therapy. Int J Cancer. 1998;79(6):606–13.

    Article  CAS  PubMed  Google Scholar 

  35. Andreassen CN, Alsner J. Genetic variants and normal tissue toxicity after radiotherapy: a systematic review. Radiother Oncol. 2009;92(3):299–309.

    Article  CAS  PubMed  Google Scholar 

  36. Taylor AM, Harnden DG, Arlett CF, Harcourt SA, Lehmann AR, Stevens S, et al. Ataxia telangiectasia: a human mutation with abnormal radiation sensitivity. Nature. 1975;258(5534):427–9.

    Article  CAS  PubMed  Google Scholar 

  37. Khanna KK. Cancer risk and the ATM gene: a continuing debate. J Natl Cancer Inst. 2000;92(10):795–802.

    Article  CAS  PubMed  Google Scholar 

  38. Ho AY, Fan G, Atencio DP, Green S, Formenti SC, Haffty BG, et al. Possession of ATM sequence variants as predictor for late normal tissue responses in breast cancer patients treated with radiotherapy. Int J Radiat Oncol Biol Phys. 2007;69(3):677–84.

    Article  PubMed  Google Scholar 

  39. Chak LY, Gill PS, Levine AM, Meyer PR, Anselmo JA, Petrovich Z. Radiation therapy for acquired immunodeficiency syndrome-related Kaposi’s sarcoma. J Clin Oncol. 1988;6(5):863–7.

    Article  CAS  PubMed  Google Scholar 

  40. Amoaku WM, Archer DB. Cephalic radiation and retinal vasculopathy. Eye (Lond). 1990;4(Pt 1):195–203.

    Article  Google Scholar 

  41. Mukesh M, Harris E, Jena R, Evans P, Coles C. Relationship between irradiated breast volume and late normal tissue complications: a systematic review. Radiother Oncol. 2012;104(1):1–10.

    Article  PubMed  Google Scholar 

  42. Giaj-Levra N, Sciascia S, Fiorentino A, Fersino S, Mazzola R, Ricchetti F, et al. Radiotherapy in patients with connective tissue diseases. Lancet Oncol. 2016;17(3):e109–e17.

    Article  PubMed  Google Scholar 

  43. Takeda Y, Dynan WS. Autoantibodies against DNA double-strand break repair proteins. Front Biosci. 2001;6:D1412–22.

    Article  CAS  PubMed  Google Scholar 

  44. Gold DG, Miller RC, Pinn ME, Osborn TG, Petersen IA, Brown PD. Chronic toxicity risk after radiotherapy for patients with systemic sclerosis (systemic scleroderma) or systemic lupus erythematosus: association with connective tissue disorder severity. Radiother Oncol. 2008;87(1):127–31.

    Article  PubMed  Google Scholar 

  45. Paulino AC, Constine LS, Rubin P, Williams JP. Normal tissue development, homeostasis, senescence, and the sensitivity to radiation injury across the age spectrum. Semin Radiat Oncol. 2010;20(1):12–20.

    Article  PubMed  Google Scholar 

  46. Bernier-Chastagner V, Hettal L, Gillon V, Fernandes L, Huin-Schohn C, Vazel M, et al. Validation of a high performance functional assay for individual radiosensitivity in pediatric oncology: a prospective cohort study (ARPEGE). BMC Cancer. 2018;18(1):719.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Rube CE, Fricke A, Schneider R, Simon K, Kuhne M, Fleckenstein J, et al. DNA repair alterations in children with pediatric malignancies: novel opportunities to identify patients at risk for high-grade toxicities. Int J Radiat Oncol Biol Phys. 2010;78(2):359–69.

    Article  PubMed  CAS  Google Scholar 

  48. Nahum AE. The radiobiology of hypofractionation. Clin Oncol (R Coll Radiol). 2015;27(5):260–9.

    Article  Google Scholar 

  49. Hall EJ. Radiobiology for the radiologist. 8th ed. Wolters Kluwer; 2018.

    Google Scholar 

  50. Toledano A, Garaud P, Serin D, Fourquet A, Bosset JF, Breteau N, et al. Concurrent administration of adjuvant chemotherapy and radiotherapy after breast-conserving surgery enhances late toxicities: long-term results of the ARCOSEIN multicenter randomized study. Int J Radiat Oncol Biol Phys. 2006;65(2):324–32.

    Article  CAS  PubMed  Google Scholar 

  51. Girinsky T, Cosset JM. [Pulmonary and cardiac late effects of ionizing radiations alone or combined with chemotherapy]. Cancer Radiother 1997;1(6):735–743.

    Google Scholar 

  52. Bentzen SM, Skoczylas JZ, Overgaard M, Overgaard J. Radiotherapy-related lung fibrosis enhanced by tamoxifen. J Natl Cancer Inst. 1996;88(13):918–22.

    Article  CAS  PubMed  Google Scholar 

  53. Niyazi M, Maihoefer C, Krause M, Rodel C, Budach W, Belka C. Radiotherapy and “new” drugs-new side effects? Radiat Oncol (Lond). 2011;6:177.

    Article  CAS  Google Scholar 

  54. Voong KR, Hazell SZ, Fu W, Hu C, Lin CT, Ding K, et al. Relationship between prior radiotherapy and checkpoint-inhibitor pneumonitis in patients with advanced non-small-cell lung cancer. Clin Lung Cancer. 2019;20(4):e470–e9.

    Article  PubMed  Google Scholar 

  55. Bentzen SM, Constine LS, Deasy JO, Eisbruch A, Jackson A, Marks LB, et al. Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC): an introduction to the scientific issues. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S3–9.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sardaro A, Petruzzelli MF, D’Errico MP, Grimaldi L, Pili G, Portaluri M. Radiation-induced cardiac damage in early left breast cancer patients: risk factors, biological mechanisms, radiobiology, and dosimetric constraints. Radiother Oncol. 2012;103(2):133–42.

    Article  PubMed  Google Scholar 

  57. Kammerer E, Le Guevelou J, Jacob S, Geffrelot J, Danhier S, Saloux E, et al. [Cardiac complications of breast radiation therapy]. Bull Cancer 2019;106(4):379–388.

    Google Scholar 

  58. Darby SC, McGale P, Taylor CW, Peto R. Long-term mortality from heart disease and lung cancer after radiotherapy for early breast cancer: prospective cohort study of about 300,000 women in US SEER cancer registries. Lancet Oncol. 2005;6(8):557–65.

    Article  PubMed  Google Scholar 

  59. Simone CB 2nd. Thoracic radiation normal tissue injury. Semin Radiat Oncol. 2017;27(4):370–7.

    Article  PubMed  Google Scholar 

  60. Ricard D, De Greslan T, Soussain C, Bounolleau P, Sallansonnet-Froment M, Delmas JM, et al. [Neurological damage of brain tumor therapy]. Rev Neurol (Paris) 2008;164(6–7):575–87.

    Google Scholar 

  61. Smart D. Radiation toxicity in the central nervous system: mechanisms and strategies for injury reduction. Semin Radiat Oncol. 2017;27(4):332–9.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Elliott SP, Malaeb BS. Long-term urinary adverse effects of pelvic radiotherapy. World J Urol. 2011;29(1):35–41.

    Article  PubMed  Google Scholar 

  63. Yeoh E. Radiotherapy: long-term effects on gastrointestinal function. Curr Opin Support Palliat Care. 2008;2(1):40–4.

    Article  PubMed  Google Scholar 

  64. Reis ED, Vine AJ, Heimann T. Radiation damage to the rectum and anus: pathophysiology, clinical features and surgical implications. Color Dis. 2002;4(1):2–12.

    Article  Google Scholar 

  65. Nicholas S, Chen L, Choflet A, Fader A, Guss Z, Hazell S, et al. Pelvic radiation and normal tissue toxicity. Semin Radiat Oncol. 2017;27(4):358–69.

    Article  PubMed  Google Scholar 

  66. Munoz-Schuffenegger P, Ng S, Dawson LA. Radiation-induced liver toxicity. Semin Radiat Oncol. 2017;27(4):350–7.

    Article  PubMed  Google Scholar 

  67. Cassady JR. Clinical radiation nephropathy. Int J Radiat Oncol Biol Phys. 1995;31(5):1249–56.

    Article  CAS  PubMed  Google Scholar 

  68. Grigsby PW, Russell A, Bruner D, Eifel P, Koh WJ, Spanos W, et al. Late injury of cancer therapy on the female reproductive tract. Int J Radiat Oncol Biol Phys. 1995;31(5):1281–99.

    Article  CAS  PubMed  Google Scholar 

  69. Wong CS, Fehlings MG, Sahgal A. Pathobiology of radiation myelopathy and strategies to mitigate injury. Spinal Cord. 2015;53(8):574–80.

    Article  CAS  PubMed  Google Scholar 

  70. Delanian S, Lefaix JL, Pradat PF. Radiation-induced neuropathy in cancer survivors. Radiother Oncol. 2012;105(3):273–82.

    Article  PubMed  Google Scholar 

  71. Murphy ES, Xie H, Merchant TE, Yu JS, Chao ST, Suh JH. Review of cranial radiotherapy-induced vasculopathy. J Neuro-Oncol. 2015;122(3):421–9.

    Article  CAS  Google Scholar 

  72. Rose SR, Horne VE, Howell J, Lawson SA, Rutter MM, Trotman GE, et al. Late endocrine effects of childhood cancer. Nat Rev Endocrinol. 2016;12(6):319–36.

    Article  CAS  PubMed  Google Scholar 

  73. Siddiqui F, Movsas B. Management of radiation toxicity in head and neck cancers. Semin Radiat Oncol. 2017;27(4):340–9.

    Article  PubMed  Google Scholar 

  74. Moore C, McLister C, Cardwell C, O’Neill C, Donnelly M, McKenna G. Dental caries following radiotherapy for head and neck cancer: a systematic review. Oral Oncol. 2020;100:104484.

    Article  PubMed  Google Scholar 

  75. Jereczek-Fossa BA, Zarowski A, Milani F, Orecchia R. Radiotherapy-induced ear toxicity. Cancer Treat Rev. 2003;29(5):417–30.

    Article  PubMed  Google Scholar 

  76. van Santen HM, van de Wetering MD, Bos AME, Vd Heuvel-Eibrink MM, van der Pal HJ, Wallace WH. Reproductive complications in childhood cancer survivors. Pediatr Clin N Am. 2020;67(6):1187–202.

    Article  Google Scholar 

  77. Armstrong GT, Stovall M, Robison LL. Long-term effects of radiation exposure among adult survivors of childhood cancer: results from the childhood cancer survivor study. Radiat Res. 2010;174(6):840–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ferlazzo ML, Bourguignon M, Foray N. Functional assays for individual radiosensitivity: a critical review. Semin Radiat Oncol. 2017;27(4):310–5.

    Article  PubMed  Google Scholar 

  79. Ozsahin M, Crompton NE, Gourgou S, Kramar A, Li L, Shi Y, et al. CD4 and CD8 T-lymphocyte apoptosis can predict radiation-induced late toxicity: a prospective study in 399 patients. Clin Cancer Res. 2005;11(20):7426–33.

    Article  CAS  PubMed  Google Scholar 

  80. Granzotto A, Benadjaoud MA, Vogin G, Devic C, Ferlazzo ML, Bodgi L, et al. Influence of nucleoshuttling of the ATM protein in the healthy tissues response to radiation therapy: toward a molecular classification of human radiosensitivity. Int J Radiat Oncol Biol Phys. 2016;94(3):450–60.

    Article  CAS  PubMed  Google Scholar 

  81. Grossberg AJ, Lei X, Xu T, Shaitelman SF, Hoffman KE, Bloom ES, et al. Association of transforming growth factor beta polymorphism C-509T with radiation-induced fibrosis among patients with early-stage breast cancer: a secondary analysis of a randomized clinical trial. JAMA Oncol. 2018;4(12):1751–7.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Bergom C, West CM, Higginson DS, Abazeed ME, Arun B, Bentzen SM, et al. The implications of genetic testing on radiation therapy decisions: a guide for radiation oncologists. Int J Radiat Oncol Biol Phys. 2019;105(4):698–712.

    Article  CAS  PubMed  Google Scholar 

  83. Fu KK, Pajak TF, Trotti A, Jones CU, Spencer SA, Phillips TL, et al. A Radiation Therapy Oncology Group (RTOG) phase III randomized study to compare hyperfractionation and two variants of accelerated fractionation to standard fractionation radiotherapy for head and neck squamous cell carcinomas: first report of RTOG 9003. Int J Radiat Oncol Biol Phys. 2000;48(1):7–16.

    Article  CAS  PubMed  Google Scholar 

  84. Thariat J, Hannoun-Levi JM, Sun Myint A, Vuong T, Gerard JP. Past, present, and future of radiotherapy for the benefit of patients. Nat Rev Clin Oncol. 2013;10(1):52–60.

    Article  CAS  PubMed  Google Scholar 

  85. Cowan RA, McBain CA, Ryder WD, Wylie JP, Logue JP, Turner SL, et al. Radiotherapy for muscle-invasive carcinoma of the bladder: results of a randomized trial comparing conventional whole bladder with dose-escalated partial bladder radiotherapy. Int J Radiat Oncol Biol Phys. 2004;59(1):197–207.

    Article  PubMed  Google Scholar 

  86. Patt HM, Tyree EB, Straube RL, Smith DE. Cysteine protection against X irradiation. Science (New York, NY). 1949;110(2852):213–4.

    Article  CAS  Google Scholar 

  87. Fried DV, Das SK, Marks LB. Imaging radiation-induced normal tissue injury to quantify regional dose response. Semin Radiat Oncol. 2017;27(4):325–31.

    Article  PubMed  Google Scholar 

  88. Evans ES, Hahn CA, Kocak Z, Zhou SM, Marks LB. The role of functional imaging in the diagnosis and management of late normal tissue injury. Semin Radiat Oncol. 2007;17(2):72–80.

    Article  PubMed  Google Scholar 

  89. Anscher MS, Kong FM, Andrews K, Clough R, Marks LB, Bentel G, et al. Plasma transforming growth factor beta1 as a predictor of radiation pneumonitis. Int J Radiat Oncol Biol Phys. 1998;41(5):1029–35.

    Article  CAS  PubMed  Google Scholar 

  90. Moulder JE, Fish BL, Cohen EP. ACE inhibitors and AII receptor antagonists in the treatment and prevention of bone marrow transplant nephropathy. Curr Pharm Des. 2003;9(9):737–49.

    Article  CAS  PubMed  Google Scholar 

  91. Delanian S, Porcher R, Balla-Mekias S, Lefaix JL. Randomized, placebo-controlled trial of combined pentoxifylline and tocopherol for regression of superficial radiation-induced fibrosis. J Clin Oncol. 2003;21(13):2545–50.

    Article  CAS  PubMed  Google Scholar 

  92. Le Rhun E, Dhermain F, Vogin G, Reyns N, Metellus P. Radionecrosis after stereotactic radiotherapy for brain metastases. Expert Rev Neurother. 2016;16(8):903–14.

    Article  PubMed  CAS  Google Scholar 

  93. Levin VA, Bidaut L, Hou P, Kumar AJ, Wefel JS, Bekele BN, et al. Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys. 2011;79(5):1487–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sebastian S, O’Connor H, O’Morain C, Buckley M. Argon plasma coagulation as first-line treatment for chronic radiation proctopathy. J Gastroenterol Hepatol. 2004;19(10):1169–73.

    Article  PubMed  Google Scholar 

  95. Clarke RE, Tenorio LM, Hussey JR, Toklu AS, Cone DL, Hinojosa JG, et al. Hyperbaric oxygen treatment of chronic refractory radiation proctitis: a randomized and controlled double-blind crossover trial with long-term follow-up. Int J Radiat Oncol Biol Phys. 2008;72(1):134–43.

    Article  CAS  PubMed  Google Scholar 

  96. Bey E, Prat M, Duhamel P, Benderitter M, Brachet M, Trompier F, et al. Emerging therapy for improving wound repair of severe radiation burns using local bone marrow-derived stem cell administrations. Wound Repair Regen. 2010;18(1):50–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Vogin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vogin, G. (2021). Description and Management of Radiotherapy-Induced Long-Term Effects. In: Rauh, S. (eds) Survivorship Care for Cancer Patients. Springer, Cham. https://doi.org/10.1007/978-3-030-78648-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78648-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78647-2

  • Online ISBN: 978-3-030-78648-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics