Skip to main content

Industrial Uses of Opuntia spp. By-products

  • Chapter
  • First Online:
Opuntia spp.: Chemistry, Bioactivity and Industrial Applications

Abstract

Prickly pear cactus stems, better known as Nopal (Opuntia spp.), is spread around the world as feedstock. It has multiple functional compounds which could be applied in functional foods or as source of nutraceuticals. Nopal application in sugar-based confectionery, bakery and dairy products improved the quality and sensorial attributes and provided bio-functional activities. In addition to applications in pharmaceuticals industry, the stems have been used since ancient time mainly as cattle fodder, fence, to purify water and to restore or control erosion of arid and semiarid lands. As cattle fodder, solid-state fermentation of stems increased the crude protein content up to 26%. As coagulant-bioflocculant nopal biopolymers are applied to water treatment to remove turbidity, suspended solids, organic carbon, kaolin, lead, arsenic, heavy metal ions, pesticide, dyes, and bacteria. Restoration of natural ecosystems with nopal produces besides a tolerant forage to drought conditions, ecological benefits like carbon capture and decreasing the global warming. Another application of nopal is to improve house paint. It is friendly with environment and works for waterproofing. Natural dyes present in fruits, like betalains, are used as natural food colorants. The mucilage of Opuntia spp. has been used to fix colors of dyed fabrics. The stems and their polysaccharides could be used in (a) bio-nano-packaging for the elaboration of coatings and biodegradable-edible films to extend shelf life of fresh, frozen and processed food, and (b) vegan leather with adequate softness. The stems also could be used as a source of enzymes in the dairy sector. In construction, cactus provides benefits in adobes, mortars and concrete reinforcing steel, improves water absorption, enhances freeze-salt resistance, and delays corrosion. In restoring historical buildings and monolith, nopal is used for impregnation of minerals (consolidation). Nopal extracts, mucilage and pectin are used as redox agent to synthetized metal nanoparticles (Li, Ag, Au, hydroxyapatite and ZnFe2O4). Nopal has been assessed as resource to generate biofuels: bioethanol from lignocellulosic material, biogas from polysaccharides, biodiesel form seed oils, and electricity from nopal biogas effluent. An electrochemical cell has been fabricated using cactus stems as an electrolyte. Betacyanin from fruit and aerobic fermented nopal extracts showed photosensitizer properties with applications as dye-sensitized solar cell and holography. The industrial uses of Opuntia spp. stems are described in this chapter. The potential technological uses of these plant and its derivatives are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alikhani, M. (2014). Enhancing safety and shelf life of fresh-cut mango by application of edible coating and microencapsulation technique. Food Science & Nutrition, 2(3), 210–217.

    Article  CAS  Google Scholar 

  • Allegra, A., Inglese, P., Sortino, G., Settanni, L., Todaro, A., & Liguori, G. (2016). The influence of Opuntia-ficus indica mucilage edible coating on the quality of ‘Hayward kiwifruit slices. Postharvest Biology and Technology, 120, 45–51.

    Article  CAS  Google Scholar 

  • Allegra, A., Sortino, G., Inglese, P., Settanni, L., Todaro, A., & Gallotta, A. (2017). The effectiveness of Opuntia ficus-indica mucilage edible coating on post-harvest maintenance of ‘Dottato’ fig (Ficus carica L.) fruit. Food Packaging and Shelf Life, 12, 135–141.

    Article  Google Scholar 

  • Alvarez-Bayona, R. A., Cortez-Valdez, M., Martínez-Suárez, F., Rivera-Cruz, J. J., & Flores-Acosta, M. (2019). Green synthesis approximation of Au/Li nanoparticles with Opuntia ficus-indica extracts. Physica E: Low-dimensional Systems and Nanostructures, 108, 169–173.

    Article  CAS  Google Scholar 

  • Ammar, I., Ennouri, M., & Attia, H. (2015). Phenolic content and antioxidant activity of cactus (Opuntia ficus-indica L.) flowers are modified according to the extraction method. Industrial Crops and Products, 64, 97–104.

    Article  CAS  Google Scholar 

  • Apollon, W., Kamaraj, S. K., Silos-Espino, H., Pérez-Segovia, C., Valera-Montero, L. L., Maldonado-Ruelas, V., Vázquez-Gutiérrez, M. A., Ortiz-Medina, R. A., Flores-Benítez, S., & Gómez-Leyva, J. F. (2020). Impact of Opuntia species plant bio-battery in a semi-arid environment: Demonstration of their applications. Applied Energy, 279, 115778.

    Article  CAS  Google Scholar 

  • Aquino, L., Rodriguez, J., Mendez, L., & Torres, K. F. (2009). Inhibition the darkening with cactus mucilage (Opuntia ficus-indica) during drying of banana roatán. Información Tecnológica, 20(4), 15–20.

    CAS  Google Scholar 

  • Araújo, L. F., Nuñez, A., Perazzo, A., de Sousa, L., & Honorato da Silva, F. L. (2005). Protein enrichment of cactus pear (Opuntia fiduc-indica Mill.) using Saccharomyces cerevisiae in solid state fermentation. Brazilian Archives of Biology and Technology, 48, 161–168.

    Article  Google Scholar 

  • Ayquipa, E. (2018). Caracterización física de películas comestibles obtenidas de mucílago de cáscara de tuna (opuntia spp) y almidón de cáscara de papa (solanum tuberosum). Facultad de Ingeniería. Escuela Académico Profesional de Ingeniería Agroindustrial. Universidad Nacional Micaela Bastidas de Apurímac. Tesis Profesional.

    Google Scholar 

  • Ayquipar-Cuellar, E., Salcedo-Sucasaca, L., Azamar-Barrios, J. A., & Chaquilla-Quilca, G. (2020). Assessment of prickly pear peel mucilage and potato Husk starch edible films production for food packaging. Waste and Biomass Valorization, 12, 321. Tesis.

    Article  CAS  Google Scholar 

  • Azócar, P., & Rojo, H. (1991). Uso de cladodios de tuna (Opuntia ficus-indica) como suplemento forrajero estival de cabras en lactancia en reemplazo de heno de alfalfa. Avances en Producción Animal, 16(1–2), 173–182.

    Google Scholar 

  • Barajas, M., Lima, M., Lara, V. H., Vazquez-Negrete, J., Barragan, C., Malvaez, C., & Bosch, P. (2009). Effect of organic and inorganic consolidation agents on Tlaltecuhtli monolith. Journal of Archaelogical Science, 36(10), 2244–2252.

    Article  Google Scholar 

  • Barbera, G., Carimi, F., & Inglese, P. (1991). The reflowering of prickly pear Opuntia ficus-incdica (L.) Miller, influence of removal time and cladodes load on yield and fruit ripening. Advances in Horticultural Science, 5, 77–80.

    Google Scholar 

  • Bariagabre, S. A., Asante, I. K., Gordon, C., & Ananng, T. Y. (2016). Cactus pear (Opuntia ficus-indica L.) a valuable crop for restoration of degrades soils in Northern Ethiopia. https://www.semanticscholar.org/paper/Cactus-Pear-(Opuntia-ficus-indica-L.)-a-Valuable-of-Bariagabre-Asante/ed1103eb290870cecc6bfe5266e21e5f4d008639

  • Baylon, M. B. O., Rodríguez-Hernández, A. M., Serguei-Ledezma, A., Romero-García, J., & Fernández-Tavizón, S. (2015). Biosíntesis de nanopartículas metálicas en extracto acuoso de Opuntia spp. de poblaciones cultivadas y silvestres. In XVI Congreso Nacional de Biotecnología y Bioingeniería. Guadalajara, Jalisco, México, 21–26 Junio de 2015.

    Google Scholar 

  • Beigomi, M., Mohsenzadeh, M., & Salari, A. (2018). Characterization of a novel biodegradable edible film obtained from Dracocephalu mmoldavica seed mucilage. International Journal of Biological Macromolecules, 108, 874–883.

    Article  CAS  PubMed  Google Scholar 

  • Beinart, W., & Wotshela, L. (2011). Prickly pear. The social history of a plant in the Eastern Cape. Wits University Press.

    Book  Google Scholar 

  • Ben Salem, H., Nefzaoui, A., Abdouli, H., & Orskov, E. R. (1996). Effect of increasing level of spineless cactus (Opuntia ficus-indica var. inermis) on intake and digestion by sheep given straw-based diets. Animal Science, 62, 293–299.

    Article  Google Scholar 

  • Benavente, fray Toribio de, Motolonía. (1541). Historia de los indios de la Nueva España. Edición, estudio y notas de Mercedes Serna Arnaiz y Bernat Castany Prado. Real Academia Española, Centro para la edición de los clásicos españoles. 2014.

    Google Scholar 

  • Bernardino-Nicanor, A., Montañez-Soto, J. L., Conde-Barajas, E., Negrete-Rodríguez, M. L. X., Teniente-Martínez, G., Vargas-León, E. A., Juárez-Goiz, J. M. S., Acosta-García, G., & González-Cruz, L. (2018). Spectroscopic and structural analyses of Opuntia Robusta mucilage and its potential as an edible coating. Coatings, 8, 466.

    Article  CAS  Google Scholar 

  • Bouazizi, S., Montevecchi, G., Antonelli, A., & Hamdi, M. (2020). Effects of prickly pear (Opuntia ficus-indica L.) peel flour as an innovative ingredient in biscuits formulation. LWT - Food Science and Technology, 124, 109155.

    Article  CAS  Google Scholar 

  • Bravo, H., & Scheinvar, L. (1995). El interesante mundo de las cactáceas. CONACYT-Fondo de Cultura Económica. 233 p.

    Google Scholar 

  • Buttice, A. L., & Alcantar, N. A. (2014). Sediment removal with the Opuntia ficus-indica cactus: A water purification method for communities in Latin America. Comprehensive Water Quality and Purification, 1, 98–103.

    Article  Google Scholar 

  • Caballero-Mellado, J. (1990). Potential use of Azospirillum in association with prickly pear cactus. In Proceedings of the First Annual Texas Prickly Pear Council, Kingsville, TX (pp. 14–21).

    Google Scholar 

  • Cárdenas, A., Arguelles, W. M., & Goycoolea, F. (1998). On the possible role of Opuntia ficus-indica mucilage in lime mortar performance in the protection of historical buildings. Journal of the Professional Association for Cactus Development, 3, 64–71.

    Google Scholar 

  • Cárdenas, A., Higuera-Ciapara, I., & Goycolea, F. (1997). Rheology and aggregation of cactus (Opuntia ficus-indica) mucilage in solution. Journal of the Professionals Association of Cactus Development, 2, 152–159.

    Google Scholar 

  • CFDP [Cactus Fruit Development Project]. (1994). Survey report. Mekelle.

    Google Scholar 

  • Chalak, L., Younes, J., Rouphael, S., & Hamadeh, B. (2012). Morphological characterization of prickly pear pears (Opuntia ficus-indica (L.) Mill) cultivated in Lebabon. International Journal of Science and Research, 3(6), 2541–2553.

    Google Scholar 

  • Chandra, S., Eklund, A. L., & Villareal, B. R. (1998). Use of cactus in mortars and concrete. Cement and Concrete Research, 28(1), 41–51.

    Article  CAS  Google Scholar 

  • Chinnock, R. J. (2015). Feral opuntioid cacti in Australia. Journal of the Adelaide Botanic Gardens, 3(Suppl), 69.

    Google Scholar 

  • Chung-Yang, Y. (2010). Emerging usage of plant-based coagulants for water and wastewater treatment. Process Biochemistry, 45(9), 1437–1444.

    Article  CAS  Google Scholar 

  • Cordeiro, D., & Gonzaga, S. (2003). Opuntia as fodder in the semi-arid northeast of Brazil. In C. Mondragón-Jacobo & S. Pérez-González (Eds.), El nopal (Opuntia spp.) como Forraje. Estudio FAO producción y protección vegetal no.169. Organización de las Naciones Unidas para la Agricultura y la Alimentación.

    Google Scholar 

  • Cotrim, M., Mottin, A., & Ayres, E. (2016). Preparation and characterization of okra mucilage (Abelmoschus esculentus) edible films. Macromolecular Symposia, 367, 90–100.

    Article  CAS  Google Scholar 

  • Damas, M. S. P., Pereira-Junior, V. A., Nishihora, R. K., & Quadri, M. G. N. (2017). Edible films from mucilage of Cereus hildmannianus fruits: Development and characterization. Journal of Applied Polymer Science, 134, 45223.

    Article  CAS  Google Scholar 

  • De Kock, G. C. (1980). Drought-resistant fodder shrub crops in South Africa. In H. N. Le Houérou (Ed.), Browse in Africa. The current state of knowledge. Works showed on International Symposim on Browse in Africa, Addis Ababa: 8–12 de Abril, 1980 (pp. 399–408). Addis Ababa International Livestock Centre for Africa.

    Google Scholar 

  • De Kock, G. C. (2003). El uso del nopal como forraje en las zonas áridas de Sudáfrica. In: El nopal (Opuntia spp.) como forraje. In Estudio FAO producción y protección vegetal No. 169. Organización de las Naciones Unidas para la Agricultura y la Alimentación.

    Google Scholar 

  • De Kock, G. C., & Aucamp, J. D. (1970). Spineless cactus, the farmers provision against drought. Leaflet No.37. Agricultural Research Institute of the Karoo Region, Department of Agricultural Technical Services Government Printer.

    Google Scholar 

  • Del-Valle, V., Hernández-Muñoz, P., Guarda, A., & Galotto, M. J. (2005). Development of a cactus-mucilage edible coating (Opuntia ficus-indica) and its application to extend strawberry (Fragaria ananassa) shelf-life. Food Chemistry, 91, 751–756.

    Article  CAS  Google Scholar 

  • Deshpande, V. K., & Joshi, A. M. (1994). Cactus (Opuntia dillenii Grahm) stem: A new source of energy. Journal of Power Sources, 47(1–2), 185–188.

    Article  CAS  Google Scholar 

  • Díaz-Blanco, Y., Menchaca-Campos, C., Rocabruno-Valdés, C. I., & Uruchurtu-Chavarín, J. (2019). Natural additive (nopal mucilage) on the electrochemical properties of concrete reinforcing steel. Revista de la Asociación Latinoamericana de Control de Calidad, Patología y Recuperación de la Construcción, 9(3), 315–337.

    Google Scholar 

  • Dick, M., Costa, T. M. H., Gomaa, A., Subirade, M., Rios, A. O., & Flôres, S. H. (2015). Edible film production from chia seed mucilage: Effect of glycerol concentration on its physicochemical and mechanical properties. Carbohydrate Polymers, 130, 198–205.

    Article  CAS  PubMed  Google Scholar 

  • Diguet, L. (1928). Les cactacées utiles du Mexique. Archives d’Histoire Naturelles. Soc. Nat. D’Acclimatation de France. 552 p.

    Google Scholar 

  • Dominguez-Martinez, B. M., Martinez-Flores, H. E., Berrios, J. J., Otoni, C. G., Wood, D. F., & Velazquez, G. (2017). Physical characterization of biodegradable films based on chitosan, polyvinyl alcohol and Opuntia mucilage. Journal of Polymers and the Environment, 25, 683–691.

    Article  CAS  Google Scholar 

  • Duque, G. (1973). O Nordeste e as lavouras xerófilas. BNB. Fonaleza. 238 p.

    Google Scholar 

  • Dúran-Herrera, A., De-León, R., Juárez, C. A., & Valdez, P. (2012). Mucilago de nopal como reductor de retracción en concreto auto-consolidable. In ANAIS DO 54o Congresso Brasileiro Do Concreto - CBC2012 – 54CBC, (Brazil) (pp. 1–18).

    Google Scholar 

  • Elizondo, E. J., López, J. J., & Dueñez, J. A. (1987). El género Opuntia (Tournefort) Miller y su distribución en el estado de Coahuila. In 2a. Reunión Nacional sobre el Conocimiento y Aprovechamiento del Nopal. Instituto de Biología. UNAM. México.

    Google Scholar 

  • El-Samahy, S. K., Youssef, K. M., & Moussa-Ayoub, T. E. (2009). Producing ice cream with concentrated cactus pear pulp a preliminary study. Journal of the Professional Association for Cactus Development, 11, 1–12.

    Google Scholar 

  • Espino-Díaz, M., Ornelas-Paz, J. J., Martínez-Téllez, M. A., Santillán, C., Barbosa-Cánovas, G. V., Zamudio-Flores, P. B., & Olivas, G. I. (2010). Development and characterization of edible films based on mucilage of Opuntia ficus-indica (L.). Journal of Food Science, 75, E347–E352.

    Article  PubMed  CAS  Google Scholar 

  • Felker, P. (2003). La utilización de Opuntia como forraje en los Estados Unidos de América. In C. Mondragón-Jacobo & S. Pérez-González (Eds.), El nopal (Opuntia spp.) como Forraje. Estudio FAO producción y protección vegetal no.169. Organización de las Naciones Unidas para la Agricultura y la Alimentación.

    Google Scholar 

  • Fernández de Oviedo, G. (1526). De la Natural Historia de las Indias. Editorial SUMMA.

    Google Scholar 

  • Flachowsky, G., & Yami, A. (1985). Composition, digestibility and feed intake of Opuntia by Ogaden sheep. Archiv fur Tiernarhung, 35, 599–606.

    CAS  Google Scholar 

  • Flores, M. A., & Reveles, M. (2010). Producción de nopal forrajero de diferentes variedades y densidades de plantación. Revista de Salud Pública y Nutrición, 5, 198–210.

    Google Scholar 

  • Flores, V. C. A., & Aguirre, J. R. (1979). El nopal como forraje. UACh-CIESTAM. 91 p.

    Google Scholar 

  • Foccher, B., Marzetti, A., Beltrame, P. L., & Carnici, P. (1991). Structural features of cellulose and cellulose derivative and their effects on enzymes hydrolysis. In C. H. Haigler & P. J. Weimer (Eds.), Biosynthesis and biodegradation of cellulose. Marcel Dekker.

    Google Scholar 

  • Francisco-Escudero, J., Villanueva-Ibáñez, M., Lucho-Constantino, C. A., Coronel-Olivares, C., Hernández-Pérez, M., & Flores-González, M. A. (2017). Biosíntesis de con Nanopartículas de ZnO Extracto Acuoso de Mucílago de Opuntia Amychlaea. Simposio Iberoamericano Multidisciplinario de Ciencias e Ingenierías, 5, 19–27.

    Google Scholar 

  • Galo, J., Acuña, E., & de la Cruz, J. A. (1985). Opuntia revegetation. An agrological restoration alternative for deteriorated rangelands in Coahuila, México. Arid Lands: Today and tomorrow. In E. E. Whitehead, C. F. Hutchinson, B. N. Timmermann, & R. G. Varady (Eds.), Proceedings of an International Research and Development Conference. Tucson Arizona, USA, October 20–25, 1985. Routledge Taylor & Francis Group.

    Google Scholar 

  • Ganta, D., Jara, J., & Villnueva, R. (2017). Dye-sensitized solar cells using Aloe vera and Cladode of Cactus extracts as natural sensitizers. Chemical Physics Letters, 679, 97–101.

    Article  CAS  Google Scholar 

  • Gheribi, R., Gharbi, M. A., El Ouni, M., & Khwaldia, K. (2019a). Enhancement of the physical, mechanical and thermal properties of cactus mucilage films by blending with polyvinyl alcohol. Food Packaging and Shelf Life, 22, 100386.

    Article  Google Scholar 

  • Gheribi, R., Habibi, Y., & Khwaldia, K. (2019b). Prickly pear peels as a valuable resource of added-value polysaccharide: Study of structural, functional and film forming properties. International Journal of Biological Macromolecules, 126, 238–245.

    Article  CAS  PubMed  Google Scholar 

  • Gheribi, R., & Khaoula, K. (2019). Cactus mucilage for food packaging applications, A review. Coatings, 9(10), 655–674.

    Article  CAS  Google Scholar 

  • Gheribi, R., Puchot, L., Verge, P., Jaoued-Grayaa, N., Mezni, M., Habibi, Y., & Khwaldia, K. (2018). Development of plasticized edible films from Opuntia ficus-indica mucilage: A comparative study of various polyol plasticizers. Carbohydrate Polymers, 190, 204–211.

    Article  CAS  PubMed  Google Scholar 

  • Girma, N., Kebede, W., & Wassu, M. (2019). Effect of aloe gel and cactus mucilage coating on chemical quality and sensory attributes of mango (Mangifera indica L.). Journal of Postvharvest Technology, 07(2), 31–43.

    Google Scholar 

  • Gonzáles, D., Luna, B., Martinez-Ávila, G. C. G., Rodríguez, H., Avendaño, V. H., & Rojas, R. (2019). Formulation and characterization of edible films based on organic mucilage from Mexican Opuntia-ficus indica. Coatings, 9, 506.

    Article  CAS  Google Scholar 

  • González, C. F., Llamas, G. L., & Bonilla, A. J. (1998). Utilización del nopal como sustituto parcial de alfalfa en dietas para vacas lecheras. Tecnología. Pecuaria en México, 3, 73–81.

    Google Scholar 

  • Gonzalez, C. L. (1989). Potential of fertilization to improve nutritive value of prickly pear cactus (Opuntia lindheimerii Engelm.). Journal of Arid Environments, 16, 87–94.

    Article  Google Scholar 

  • Gopi, D., Kanimozhi, K., & Kavitha, L. (2015). Opuntia ficus-indica peel derived pectin mediated hydroxyapatite nanoparticles: Synthesis, spectral characterization, biological and antimicrobial activities. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 141(15), 135–143.

    Article  CAS  Google Scholar 

  • Granados, S., & Castañeda, D. P. (1997). El Nopal: Historia, fisiología, genética e importancia frutícola (1st ed.). Trillas.

    Google Scholar 

  • Gregory, R. A., & Felker, P. (1992). Crude protein and phosphorus contents of eight contrasting Opuntia forage clones. Journal of Arid Environments, 22, 323–331.

    Article  Google Scholar 

  • Griffiths, D. (1905). The prickly pear and other cacti as food for stock. USDA Bulletin (Vol. 74) 48 p.

    Book  Google Scholar 

  • Griffiths, D. (1915). Yields of native prickly pear in Southern Texas. USDA Bulletin No. 208. Government Printing Office. 11 pp.

    Book  Google Scholar 

  • Guadarrama-Lezama, Y., Castano, J., Velazquez, G., Carrillo-Navas, H., & Alvarez-Ramirez, J. (2018). Effect of nopal mucilage addition on physical, barrier and mechanical properties of citric pectin-based films. Journal of Food Science and Technology, 55, 3739–3748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guevara-Arauza, J. C. (2010). Empacado de Alimentos (1st ed.). Editorial Trillas.

    Google Scholar 

  • Guevara, J. C., & Estévez, O. R. (2003). Opuntia spp. para la producción de forraje en Argentina: Experiencias y perspectivas. In C. Mondragón-Jacobo & S. Pérez-González (Eds.), El nopal (Opuntia spp.) como Forraje. Estudio FAO producción y protección vegetal no.169. Organización de las Naciones Unidas para la Agricultura y la Alimentación.

    Google Scholar 

  • Guevara-Arauza, J. C., Barcenas, D. G., Ortega-Rivas, E., Pérez, J. D., Reyes, J., & Ornelas-Paz, J. J. (2015). Effect of fiber fractions of prickly pear cactus (nopal) on quality and sensory properties of wheat bread rolls. Journal of Food Science and Technology, 52(5), 2990–2997.

    Article  PubMed  Google Scholar 

  • Guevara-Arauza, J. C., Ornalas-Paz, J. J., Pimentel, J., Rosales, S., Soria, R., & Paz, L. M. T. (2012). Prebiotic effect of mucilage and pectic-derived oligosaccharides from nopal (Opuntia ficus-indica). Food Science and Biotecnology, 21(4), 997–1003.

    Article  CAS  Google Scholar 

  • Guevara-Arauza, J. C., & Ornelas, J. J. (2013). Tecnologia Poscosecha Y Efectos Bifuncionales Del Nopal Y La Tuna (1st ed.). Editorial Trillas.

    Google Scholar 

  • Guevara-Arauza, J. C., Ornelas-Paz, J. J., Rosales, S., Soria, R. E., Paz, L. M. T., & Pimentel, D. J. (2011). Biofuntional activity of tortillas and bars enhanced with nopal. Preliminary assessment of functional effect after intake on the oxidative status in healthy volunteers. Chemistry Central Journal, 5(10), 1–10.

    Google Scholar 

  • Guillen, J., León, d E., Ortiz, N., Escudero, R., & Rojas-Valencia, M. N. (2019). Study of properties of Echerhirhu-Block made with Opuntia ficus mucilage for use in the construction industry. Case Studies in Construction Materials, 10, 1–7.

    Google Scholar 

  • Habibi, Y., Mahrouz, M., Marais, M. F., & Vignon, M. R. (2004). An arabinogalactan from the skin of Opuntia ficus-indica prickly pear fruits. Carbohydrate Research, 339, 1201–1205.

    Article  CAS  PubMed  Google Scholar 

  • Han, H., & Felker, P. (1997). Field validation of water use efficiency of CAM plant Opuntia ellisiana in south Texas. Journal of Arid Environments, 36, 133–148.

    Article  Google Scholar 

  • Hassan, B., Chatha, S. A. S., Hussain, A. I., Zia, K. M., & Akhtar, N. (2018). Recent advances on polysaccharides, lipids and protein based edible films and coatings. International Journal of Biological Macromolecules, 109, 1095–1107.

    Article  CAS  PubMed  Google Scholar 

  • Hernández, J. B., & Serrano, G. R. (2003). Uso del nopal en la industria de la construcción. In Memorias del IX Congreso Nacional y VII Congreso Internacional sobre Conocimiento y Aprovechamiento del Nopal, Zacatecas, Mexico (pp. 286–289).

    Google Scholar 

  • Hernández-Urbinola, M. I., Contreras-Padilla, M., Pérez-Torero, E., & Hernández-Quevedo, M. E. (2010). Study of nutritional composition of nopal (Opuntia ficus-indica cv. Redonda) at different maturity stages. Open Nutrition Journal., 4, 11–16.

    Article  CAS  Google Scholar 

  • Hosking, J. R., McFadyen, R. E., & Murray, N. D. (1988). Distribution and biological control of cactus species in eastern Australia. Plant Protection Quarterly, 3, 115–123.

    Google Scholar 

  • Huffpost Algeria. (2015). La figue de Barbarie, un fruit venu dáilleurs devenu produit du terroir en Algérie. http://www.huffpostmaghreb.com/2015/08/04/n_7932698.html

  • Jouki, M., Yazidi, F. T., Mortazavi, S. A., & Koocheki, A. (2014). Quince seed mucilage films incorporated with oregano essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. Food Hydrocolloids, 36, 9–19.

    Article  CAS  Google Scholar 

  • Kahramanoğlu, İ. (2020). Preserving postharvest storage quality of fresh loquat fruits by using different bio-materials. Journal of Food Science and Technology, 57, 3004. https://doi.org/10.1007/s13197-020-04333-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamaraj, S. K., Rivera, A., Murugesan, S., García-Mena, J., Maya, O., Frausto-Reyes, C., Tapia-Ramírez, J., Silos, E., & Caballero-Briones, F. (2019). Electricity generation from Nopal biogas effluent using a surface modified clay cup (cantarito) microbial fuel cell. Helyon, 5(4), e01506.

    Article  Google Scholar 

  • Kandasamy, K., Venkatesh, M., Khadar, Y. A., & Rajasingh, P. (2019). One-pot green synthesis of CdS quantum dots using Opuntia ficus-indica fruit sap. Materials Today: Proceedings, 26, 3503. https://doi.org/10.1016/j.matpr.2019.06.003

    Article  CAS  Google Scholar 

  • Karami, N., Kamkar, A., Shahbazi, Y., & Misaghi, A. (2019). Edible films based on chitosan-flaxseed mucilage: In vitro antimicrobial and antioxidant properties and their application on survival of food-borne pathogenic bacteria in raw minced trout fillets. Pharmaceutical and Biomedical Research, 5, 10–16.

    CAS  Google Scholar 

  • Kharrat, N., Salem, H., Mrabet, A., Aloui, F., Triki, S., Fendri, A., & Gargouri, Y. (2018). Synergistic effect of polysaccharides, betalain pigment and phenolic compounds of red prickly pear (Opuntia stricta) in the stabilization of salami. International Journal of Biological Macromolecules, 111, 561–568. https://doi.org/10.1016/j.ijbiomac.2018.01.025

  • Kombaiah, K., Vijaya, J. J., Kennedy, L. J., Bououdina, M., Al-Lohedan, H. A., & Ramalingam, R. J. (2017). Studies on Opuntia dilenii haw mediated multifunctional ZnFe2O4 nanoparticles: Optical, magnetic and catalytic applications. Materials Chemistry and Physics, 194(15), 153–164.

    Article  CAS  Google Scholar 

  • Krümpel, J., George, T., Gasston, B., Francis, G., & Lemmer, A. (2020). Suitability of Opuntia ficus-indica (L) Mill. And Euphorbia tirucalli L. as energy crops for anaerobic digestion. Journal of Arid Environments, 174, 104047.

    Article  Google Scholar 

  • Kuloyo, O. O., du Perez, J. K. C., García-Aparicio, M., Kilian, S. G., Steyn, L., & Görgens, J. (2014). Opuntia ficus-indica cladodes as feedstock for ethanol production by Kluyveromuces marxianus and Saccharomyces cerevisiae. World Journal of Microbiology and Biotechnology, 30, 3173–3183.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, A., Madhusudana, R. K., Haider, A., Han, S. S., Son, T. W., Kim, J. H., & Oh, T. H. (2017). Fabrication and characterization of multicomponent polysaccharide/nanohydroxyapatite composite scaffolds. Polymer-Plastics Technology and Engineering, 56, 983–991.

    Article  CAS  Google Scholar 

  • Kumar, A., Rao, K. M., & Han, S. S. (2018). Application of xanthan gum as polysaccharide in tissue engineering. A review. Carbohydrate Polymers, 180, 128–144.

    Article  CAS  PubMed  Google Scholar 

  • Le Houérou, H. N. (1989). An assessment of the economic feasibility of fodder shrubs plantations with particular reference to Africa. In The biology and utilization of shrubs (pp. 603–630). Academic Press.

    Chapter  Google Scholar 

  • Le Houérou, H. N. (1992). The role of Opuntia cacti in the agricultural development of the Mediterranean arid zones. In 2nd Int. Cong. de Tuna y Cochinilla. Santiago, Chile, 22-25 Septiembre, 1992.

    Google Scholar 

  • Le Houérou, H. N. (1994). Drought tolerant and water-efficient fodder shrubs (DTFS), their role as a “drought insurance” in the agricultural development of arid and semi-arid zones in southern Africa. Report to the Water Research commission of South Africa. Pretoria, South Africa. 139.

    Google Scholar 

  • Le Houérou, H. N. (1996). The role of cacti (Opuntia spp.) in erosion control, land reclamation, rehabilitation and agricultural development in the Mediterranean Basin. Journal of Arid Environments, 33, 135–159.

    Article  Google Scholar 

  • Ledezma, A., Romero, J., Hernández, M., Moggio, I., Arias, E., & Padrón, G. (2014). Síntesis biomimética de nanopartículas de plata utilizando extracto acuoso de nopal (Opuntia sp.) y su electrohilado polimérico. Superficies y Vacío, 27(4), 133–140.

    CAS  Google Scholar 

  • León-Martínez, F. M., Cano-Barrita, P. F. J., Lagunez-Rivera, L., & Medina-Torres, L. (2014). Study of nopal mucilage and marine brown algae extracts as viscosity-enhancing admixtures for cement based materials. Construction and Building Materials, 53(28), 190–202.

    Article  Google Scholar 

  • Lima, M. A., França, M. P., & Días, F. M. (1985). Emprego da associação palma forrageira e silagem de sorgo na alimentação de vacas holandesas em lactação. In Anais 22a Reunião anul da sociedade brasileira de zootecnia.

    Google Scholar 

  • Lira-Vargas, A. A., Corrales-Garcia, J. J. E., Valle-Guadarrama, S., Peña-Valdivia, C. B., & Trejo-Marquez, M. A. (2014). Biopolymeric films based on cactus (Opuntia ficus-indica) mucilage incorporated with gelatin and bees wax. Journal of the Professional Association for Cactus Development, 16, 51–70.

    Google Scholar 

  • López de Gómara, F. (1552). La Conquista de México. Alden, J.E. European America. https://archive.org/details/laconquistademex00lpez/page/n4/mode/2up

  • López, G. J. J., Nava, R. C., & Gasto, J. C. (1978). Ecosistemas naturales y diseñados en Opuntia engelmannii y Opuntia cantabrigiensis, Univ. Aut. Agraria Antonio Narro. Satillo, México. Monografía Técnico Científica, 4, 394–595.

    Google Scholar 

  • Lopez García, J. J., Fuentes Rodríguez, J. M., & Rodríguez Gámez, A. (2003). Producción y uso de Opuntia como forraje en el centro-norte de México. In C. Mondragón-Jacobo & S. Pérez-González (Eds.), El nopal (Opuntia spp.) como Forraje. Estudio FAO producción y protección vegetal no.169. Organización de las Naciones Unidas para la Agricultura y la Alimentación.

    Google Scholar 

  • López-Domínguez, C. M., Ramirez-Sucre, M. O., & Rodriguez-Buenfil, I. M. (2019). Enzymatic hydrolysis of Opuntia ficus-indica cladode by Acinetobacter pittii and alcohol fermentation by Kluyveromyces marxianus: pH, temperature and microorganism effect. Biotechnology Reports, 24, e00384. https://doi.org/10.1016/j.btre.2019.e00384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Garcia, F., Jimenez-Martinez, C., Guzman-Lucero, D., Maciel-Cerda, A., Delgado-Macuil, R., Cabrero-Palomino, D., Terres-Rojas, E., & Arzate-Vazquez, I. (2017). Physical and chemical characterization of a biopolymer film Made with corn starch and nopal xoconostle (Opuntia joconsotle) Mucilage. Revista Mexicana de Ingeniería Química, 16, 147–158.

    Article  CAS  Google Scholar 

  • Lopéz-León, L. D., Juárez-Islas, M. A., Bassam, A., Perez-Callejas, A. D., & Castañeda-Robles, I. E. (2019). Electrochemical behavior of a cactus mucilage-based corrosion-resistant coating. International Journal of Electrochemical Science, 14, 10016–10031.

    Article  CAS  Google Scholar 

  • Lueangwattanapong, K., Ammam, F., Mason, P. M., Whitehead, C., MacQueen-Mason, S. J., Gomez, L. D., Andrew, J., Smith, C., & Thompson, I. P. (2020). Anaerobic digestion of crassulacean acid metabolism plants: Exploring alternative feedstocks for semi-arid lands. Bioresource Technology, 297, 122262.

    Article  CAS  PubMed  Google Scholar 

  • Lukefahr, S. D., & Cheeke, P. R. (1990). Rabbit project planning strategies for developing countries. (2) Research applications. Livestock Research for Rural Development, 2(23), 5.

    Google Scholar 

  • Malanine, M. E., Mahrouz, M., & Dufresne, A. (2005). Thermoplastic nanocomposites based on cellulose microfibrils from Opuntia ficus-indica parenchyma cell. Composites Science and Technology, 65(10), 1520–1526.

    Article  CAS  Google Scholar 

  • Maldonado, L. J., & Zapien, M. B. (1977). El nopal en México. Ciencia Forestal, 2(15), 36–53.

    Google Scholar 

  • Marin-Bustamante, M. Q., Chanona-Perez, J. J., Guemez-Vera, N., Cásares-Santiago, R., Perea-Flores, M. J., Arzate-Vazquez, I., & Calderon-Dominguez, G. (2017). Production and characterization of cellulose nanoparticles from nopal waste by means of high impact milling. 3rd International Conference on Natural Fibers: Advanced Materials for a Greener World, ICNF 2017, 21–23 June 2017, Braga, Portugal. Procedia Engineering, 200, 428–433.

    Article  CAS  Google Scholar 

  • Martinez-Camacho, F., Vazquez-Negrete, J., Lima, E., Lara, V. H., & Bosch, P. (2008). Texture of nopal treated adobe: Restoring Nuestra Señora del Pilar mission. Journal of Archeological Science, 35(5), 1125–1133.

    Article  Google Scholar 

  • Martinez-Molina, W., Torres-Acosta, A., Hernández-Leos, R., Alonso-Guzman, E., Mendoza-Pérez, I., & Martinez-Peña, I. (2016). The inhibitive properties of Nopal slime on the corrosion of steel in chloride-contaminated mortar. Anti-Corrosion Methods and Materials, 63(1), 65–71. https://doi.org/10.1108/ACMM-05-2014-1381

  • Mascarua-Esparza, M. A., Villa-Gonzalez, R., & Caballero-Mellado, J. (1988). Acetylene reduction and indolacetic acid production by Azospirillum isolates from cactaceous plants. Plant and Soil, 106, 91–95.

    Article  CAS  Google Scholar 

  • Matsuhiro, B., Lillo, L. E., Sáenz, C., Urzúa, C. C., & Zárate, O. (2006). Chemical characterization of the mucilage from fruits of Opuntia ficus-indica. Carbohydrate Polymers, 63, 263–267.

    Article  CAS  Google Scholar 

  • Melo, J. N., de França, M. P., & Andrade, J. C. (1992). Silagem em Mutirão - Uma prática quo deu Certo. IPA Comunicado Técnico, 51.

    Google Scholar 

  • Merrill, L. B., Taylor, C. A., Dusek, R., & Livingston, C. W. (1980). Sheep losses from range with heavy prickly pear infestation. In D. N. Ueckert & J. E. Huston (Eds.), Rangeland resources research. Texas Agriculture Experiment Station consolidated progress report, 3665. 91 p.

    Google Scholar 

  • Mestrallet, M. G., Nepote, V., Quiroga, P. R., & Grosso, N. (2009). Effect of prickly pear (Opuntia ficus-indica) and algarrobo (Prosopis spp.) pod syrup coatings on the sensory and chemical stability in roasted peanut products. Journal of Food Quality, 32(3), 334–351.

    Article  CAS  Google Scholar 

  • Metral, J. J. (1965). Les cactées fourragéres dans le Nord-Est du Brésil, plus particulièrment dans L’état du Ceara. L’Agronomie Tropical, 20, 248–261.

    Google Scholar 

  • Migaki, G., Hinson, L. E., Imes, G. D., & Garner, F. M. (1969). Cactus spines in the tongues of slaughtered cattle. Journal of the American Veterinary Medical Association, 155, 1489–1492.

    CAS  PubMed  Google Scholar 

  • Miretzky, P., Muñoz, C., & Carrillo-Chavez, A. (2008). Experimental binding of lead to a low-cost on biosorbent: Nopal (Opuntia streptacantha). Bioresource Technology, 99(5), 1211–1217.

    Article  CAS  PubMed  Google Scholar 

  • Mondragon Jacobo, C., & Chessa, I. (2013). A global perspective on genetic resources of cactus pear: An asset for the future sustainability of semiarid lands. Acta Horticulturae, 995, 19–26.

    Article  Google Scholar 

  • Monjauze, A., & Le Houérou, H. N. (1965). Les Opuntia dans l’economie agricole nord-africaine. FAO.

    Google Scholar 

  • Morais, M. A., Fonseca, K. S., Viégas, E. K. D., Almeida, S. L., Maia, R. K. M., Silva, V. N. S., & Simoes, A. N. (2019). Mucilage of spineless cactus in the composition of an edible coating for minimally processed yam (Dioscorea spp.). Journal of Food Measurement and Characterization, 13, 2000–2008.

    Article  Google Scholar 

  • Najera-García, A., Lopez-Hernandez, R. E., Lucho-Constantino, C. A., & Vázquez-Rodriguez, G. A. (2018). Towards drylands borefineries. Valorisation of forage Opuntia for the production of edible coatings. Sustainability, 10, 1878–1891.

    Article  CAS  Google Scholar 

  • Nefzaoui, A., Chermiti, A., & Ben Salem, H. (1993). Spineless cactus (Opuntia ficus-indica var. inermis) as a supplement for treated straw. In Proc. 7th Meeting of the FAO Sub-Network on Mediterranean Pastures and Fodder Crops. Chania, Greece, 21–23 April 1993.

    Google Scholar 

  • Nharingo, T., & Moyo, M. (2016). Application of Opuntia ficus-indica in bioremediation of wastewaters. A critical review. Journal of Environmental Management, 166(15), 55–72.

    Article  CAS  PubMed  Google Scholar 

  • Ochoa, M. J., & Barberab, G. (2017). History and economic and agro-ecological importance. In C. Mondragon, A. Nefzaoui, & C. Sáenz (Eds.), Crop ecology, cultivation and uses of cactus pear (pp. 1–11). The Food and Agriculture Organization of the United Nations and The International Center for Agricultural Research in the Dry Areas.

    Google Scholar 

  • Olicón-Hernández, D. R., Acosta-Sánchez, A., Monterrubio-López, R., & Guerra-Sánchez, G. (2020). Chitosan and Opuntia ficus-indica mucilage as the base of polymeric edible film for the protection of tomatoes against Rhizopus stolonifer. TIP Revista Especializada en Ciencias Químico-Biológicas, 22, 1–9.

    CAS  Google Scholar 

  • Olivares-Pérez, A., Toxqui-Lopéz, S., & Padilla-Velasco, A. L. (2012). Nopal cactus (Opuntia ficus-indica) as a holographic material. Materials, 5, 2383–2402.

    Article  PubMed Central  CAS  Google Scholar 

  • Oliveira, M. A. (2001). Production of fungal protein by solid substrate fermentation of cactus Cereus peruvianus and Opuntia ficus-indica. Quimica Nova, 24, 307–310.

    Article  Google Scholar 

  • Oluwaseun, A. C., Samuel, O. F., & Sunday, A. E. (2014). Effects of Opuntia cactus mucilage extract and storage under evaporative coolant system on the shelf life of Carica papaya fruits. Journal Agrobiotechnology, 5, 49–66.

    Google Scholar 

  • Orozco, E. (2017). Elaboración y caracterización de películas de mucilago de nopal-pectina: Efecto de la concentración del mucilago de nopal en las propiedades fisicoquímicas y mecánicas. Químico en Alimentos. Facultad de Química. Universidad Autónoma del Estado de México. Tesis. 

    Google Scholar 

  • Osorio, C. J., Paleyo, Z. C., Verde, C. J. R., Ponce, V. M., Díaz de León, S. F., Bosques, M. E., & Rodríguez, H. M. E. (2011). Conservación del nopal verdura “Milpa Alta” (Opuntia ficus-indica Mill.) desespinado en envase con atmosfera modificada. Revista Mexicana de Ingeniería Química, 10, 93–104.

    Google Scholar 

  • Panda, S. K., Behera, S. K., Qaku, X. W., Sekar, S., Ndinteh, D. T., Nanjundaswamy, H. M., Ray, R. C., & Kayitesi, E. (2017). Quality enhancement of prickly pears (Opuntia sp.) juice through probiotic fermentation using Lactobacilñlus fermentum - ATCC 9338. LWT - Food Science and Technology, 75, 453–459.

    Article  CAS  Google Scholar 

  • Paterson, I. D., Hoffmann, J. H., Klein, H., Mathenge, C. W., Neser, S., & Zimmermann, H. G. (2011). Biological control of cetacea in South Africa. African Entomology: Journal of the Entomological Society of Southern Africa, 19(2), 230–246.

    Article  Google Scholar 

  • Pérez-Castellanos, N. A. (2009). Formulación de un mortero de inyección con mucilago de nopal para restauración de pintura mural. In Escuela Nacional de Conservación, Restauración y Museografía “Manuel del Castillo Negrete” Memorias 2º Foro Académico.

    Google Scholar 

  • Perez-Navarro, T. F. (2016). Formulation and characterization of homemade ice cream and water ice with colored cactus pears. Universidad de Chile, Facultad de Ciencias Agronómicas, Escuela de Pregrado. Carmen Saenz, Marcela Medel M., Juan Manuel Uribe M., Hugo Nuñez K.

    Google Scholar 

  • Peschard, A., Govin, A., Grosseau, P., Guilhot, B., & Guyonnet, R. (2004). Effect of polysaccharides on the hydration of cement paste at early ages. Cement and Concrete Research, 34, 2153–2158.

    Article  CAS  Google Scholar 

  • Pessoa, A. S. (1967). Cultura da Palma Forrageira. SUDENE - Divisio de Documentayção. 98 p.

    Google Scholar 

  • Purushothamreddy, N., Dileep, R., Veerappan, G., Kovendhan, M., & Joseph, D. P. (2020). Prickly pear fruit extract as photosensitizer for dye-sensitized solar cell. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 228(5), 117686.

    Article  CAS  Google Scholar 

  • Qin, Y., Liu, Y., Xin, Z., & Liu, J. (2020). Development of active and intelligent packaging by incorporating betalains from red pitaya (Hylocereus polyrhizus) peel into starch/polyvinyl alcohol films. Food Hydrocolloids, 100, 105410.

    Article  CAS  Google Scholar 

  • Ramírez-Arellanes, S., Cano-Barrita, P. F. J., Julián-Caballero, F., & Gómez-Yañez, C. (2012). Propiedades de durabilidad en concreto y análisis microestructural en pastas de cemento con adición de mucílago de nopal como aditivo natural. Materiales de Construcción, 62(307), 327–341.

    Article  CAS  Google Scholar 

  • Ramírez-Arpide, F. R., Demirer, G. N., Gallegos-Vazquez, C., Hernandez-Eugenio, G., Santoyo-Cortez, V. C., & Espinosa-Solares, T. (2018). Life cycle assessment of biogas production through anaerobic co-digestion of nopal cladodes and dairy cow manure. Journal of Cleaner Production, 20, 2313–2322.

    Article  CAS  Google Scholar 

  • Ramsey, J. E. (1999). Evaluación del comportamiento del adobe estabilizado con cal y goma de tuna. Tesis para optar al Título de Ingeniero Agrícola. Universidad Nacional Agraria La Molina, Lima, Peru. (Agricultural engineering thesis).

    Google Scholar 

  • Rao, V. P., Sankaran, M. A., & Marthur, K. C. (1971). A review of biological control of insects and other pets in South-East Asia and the Pacific Region. Technical Communication No. 6. CIBC. 149 p.

    Google Scholar 

  • Retamal, N., Duran, J. M., & Fernandez, J. (1987). Ethanol production by fermentation of fruits and cladodes of prickly pear cactus (Opuntia ficus-indica (L.) Miller). Journal of the Science of Food and Agriculture, 40, 213–218.

    Article  CAS  Google Scholar 

  • Riveros, E. V., de Cortázar, G., & García, G. (1990). Uso de cladodios de tuna (Opuntia ficus-indica) como suplemento forrajero estival para ovinos en crecimiento. Avances en Producción Animal, 15(1–2), 81–88.

    Google Scholar 

  • Rodríguez, J. L., Nevarez-Moorillón, G. V., Goncalves, A. R., Peralta, M. R., Muñoz-Castellanos, L., Ayala, G., Arevalo-Gallegos, S., & Ballinas Casarrubias, M. L. (2015). Ciencia. Tecnología e Innovación, 69–74.

    Google Scholar 

  • Rodriguez-Felix, A., & Cantwell, M. (1988). Developmental changes on the composition and quality of prickly pear cactus cladodes (nopalitos). Plant Food for Human Nutrition, 38, 83–93.

    Article  CAS  Google Scholar 

  • Ruiz-Hernández, F. (2009). Aplicación de películas comestibles a base de quitosano y mucílago de nopal en fresa (Fragaria ananassa) almacenada en refrigeración. Maestría en Ciencia de Alimentos. Departamento de Ingeniería Química y Alimentos. Escuela de Ingeniería, Universidad de las Américas Puebla. Tesis profesional.

    Google Scholar 

  • Sadeghi-Varkani, A., Emam-Djomeh, Z., & Askari, G. (2018). Physicochemical and microstructural properties of a novel edible film synthesized from Balangu seed mucilage. International Journal of Biological Macromolecules, 108, 1110–1119.

    Article  CAS  PubMed  Google Scholar 

  • Sáenz, C. (2013). Chapter 7. Industrial production of non-food products. In Agro-industrial utilization of cactus pear. FAO Rural Infrastructure and Agro-Industries Division, in collaboration with the International Technical Cooperation Network on Cactus (FAO-CACTUSNET).

    Google Scholar 

  • Sáenz, C., Sepúlveda, E., & Matsuhiro, B. (2004). Opuntia spp, mucilage’s: A functional component with industrial perspectives. Journal of Arid Environments, 57(3), 275–290.

    Article  Google Scholar 

  • Saleem, M., & Bachmann, R. T. (2019). A contemporary review on plant-based coagulants for application in water treatment. Journal of Industrial and Engineering Chemistry, 72, 281–297.

    Article  CAS  Google Scholar 

  • Salinas-Salazar, V. M., Trejo-Márquez, M. A., & Lira-Vargas, A. (2015). Propiedades físicas, mecánicas y de barrera de películas comestibles a base de mucilago de nopal como alternativa para la aplicación de frutos. Revista Iberoamericana de Tecnología Postcosecha, 162(2), 193–198.

    Google Scholar 

  • Sanchez, F., Curt, M. D., Fernandez, F., Aguera, J. M., Uceda, M., & Zaragoza, G. (2009). Bioethanol production from prickly pear (Opuntia ficus-indica (L) Mill.). In 17th European Biomass Conference and Exhibition, 29 June–3 July 2009, Hamburg, Germany (pp. 1917–1921).

    Google Scholar 

  • Santana, O. P., Estirna, A. L., & Farias, I. (1972). Palma versus silagem na alimentação de vacas leiteiras. Revista da Sociedade Brasileira de Zootecnia, 1(1), 31–40.

    Google Scholar 

  • Santana, P. (1992). Tunas forrajeras (Opuntia ficus-indica and Nopalea cochellinifera) en el nordeste brasileño. In Actas del II Congreso Internacional de Tuna y Cochinilla. Facultad de Ciencias Agrarias y Forestales. Santiago, Chile.

    Google Scholar 

  • Santos, D. C., Lira, M. A., & Santos, M. V. F. (1998). Competição de clones de palma forrageira (Opuntia e Nopalea), São Bento do Una-PE. In Anais 35a Reunião da Soc. Bras. de Zoot., Botucatu, Brazil (pp. 37–39).

    Google Scholar 

  • Santos, M. V. F., Lira, M. A., & Farias, I. (1990). Estudo do comportamento das cultivares de palma forrageira gigante, redonda (Opuntia ficus-indica) e miúda (Nopalea cochellinifera) na produção de leite. Revista da Sociedade Brasileira de Zootecnia, 19(6), 504–511.

    Google Scholar 

  • Santos, T. D. N., Dutra, E. D., Gomes Do Prado, A., Leite, F. C. D., de Souza, R. D. F. R., dos Santos, D. C., Moraes de Abreu, C. A., Simões, D. A., de Morais, M. A., Jr., & Menezes, R. S. C. (2016). Potential for biofuels from the biomass of prickly pear cladodes: Challenges for bioethanol and biogas production in dry areas. Biomass and Bioenergy, 85, 215–222.

    Article  CAS  Google Scholar 

  • Scognamiglio, F., Mirebile, D., Roselli, G., Persia, F., de Angelis, U., & Santulli, C. (2020). Thermoplastic starch (TPS) films added with mucilage from Opuntia ficus-indica: Mechanical, microstructural and thermal characterization. Materials, 13(4), 1000.

    Article  CAS  PubMed Central  Google Scholar 

  • Sellami, M., Zarai, Z., Khadhraoui, M., Jdidi, N., Leduc, R., & Ben Rebah, F. (2014). Cactus juice as bioflocculant in the coagulation-flocculation process for industrial wastewater treatment: A comparative study with polyacrylamide. Water Science and Technology, 70(7), 1175–1181.

    Article  CAS  PubMed  Google Scholar 

  • Sepúlveda, E., Sáenz, C., Aliaga, E., & Aceituno, C. (2007). Extraction and characterization of mucilage in Opuntia spp. Journal of Arid Environments, 68, 534–545.

    Article  Google Scholar 

  • Shoop, M. C., Alford, E. J., & Mayland, H. F. (1977). Plains prickly pear is good for cattle. Journal of Range Management, 30, 12–17.

    Article  CAS  Google Scholar 

  • Silva-de Hoyos, L. E., Sánchez-Mendieta, V., Rico-Moctezuma, A., & Vilchis-Nestor, A. R. (2012). Silver nanoparticles biosynthesized using Opuntia ficus aqueous extract. Superficies y Vacío, 25(1), 31–35.

    CAS  Google Scholar 

  • Souza, d A. C. (1963). Revisão dos conhecimentos sobre as «palmas forrageiras». IPA Boletim Técnico, 5, 36.

    Google Scholar 

  • Terblanche, I. L., Mulder, A. M., & Rossouw, J. W. (1971). The influence of moisture content on the dry matter intake and digestibility of spineless cactus. Agro-animalia, 3(2), 73–77.

    Google Scholar 

  • Thomas, S. W., Pais, Y., & Alcantar, N. (2013). Electrospun cactus mucilage nanofibers. United States Patent No. US 2013/0068692 A1.

    Google Scholar 

  • Torres-Acosta, A., & Diaz-Cruz, A. (2020). Concrete durability enhancement from nopal (Opuntia ficus-indica) additions. Construction and Building Materials, 243(20), 118–170.

    Google Scholar 

  • Torres-Acosta, A. A. (2007). Opuntia-Ficus-Indica (Nopal) mucilage as a steel corrosion inhibitor in alkaline media. Journal of Applied Electrochemistry, 37(7), 835–841.

    Article  CAS  Google Scholar 

  • Torres-Acosta, A. A., & Martínez-Madrid, M. (2005). Mortar improvements from Opuntia ficus-indica (Nopal) and Aloe vera additions. In Inter American Conference on Non-Conventional Materials and Technologies in Ecological and Sustainable Construction (pp. 655–664). IAC-NOCMAT.

    Google Scholar 

  • Torres-Acosta, A. A., Martínez-Madrid, M., Loveday, D. C., & Silsbee, M. R. (2005). Nopal and Aloe vera additions in concrete: Electrochemical behavior of the reinforcing steel. Paper No. 05269. In 60th Annual Conference and Exposition Corrosion.

    Google Scholar 

  • Trevino-Garza, M. Z., García, S., Heredia, N., Alanís-Guzmán, M. G., & Arévalo-Nino, K. (2017). Layer-by-layer edible coatings based on mucilages, pullulan and chitosan and its effect on quality and preservation of fresh-cut pineapple (Ananascomosus). Postharvest Biology and Technology, 128, 163–175.

    Article  CAS  Google Scholar 

  • University of California Cooperative Extension. UC Small Farm Program. (1989). Prickly pear cactus production. http://sfp.ucdavis.edu/pubs/brochures/Pricklypear/

  • Valdés, A., & Garrigós, M. C. (2016). Carbohydrate-based advanced biomaterials for food sustainability. Materials Science Forum, 842, 182–195.

    Article  Google Scholar 

  • Vargas, D. (2015, September 12). Mexican students develop organic paint made from nopal. Mexico News Network. http://www.mexiconewsnetwork.com/en/news/adventure/organic-paint-mexican-nopal/

  • Vásquez, R., Ventura, E., Oleschko, K., Hernandez, L., Parrot, J. F., & Nearing, M. (2010). Soil erosion and runoff in different vegetation patches from semiarid Central Mexico. Catena, 80(3), 16–169.

    Google Scholar 

  • Vázquez-Alvarado, R. E., del Blanco-Macías, F., Ojeda-Zacarías, M. C., Martínez-López, J. R., Valdez-Cepeda, R. D., Santos-Haliscak, A., & Háuad-Marroquín, A. (2011). Reforestación a base de nopal y maguey para la conservación de suelo y agua. Revista Salud Publica y Nutrición, 5, 185–203.

    Google Scholar 

  • Viana, S. P., Souto, J. P. M., & Coêlho, A. A. (1966). Alimentação de bovinos manejados em regime de confinamento. IPA Boletim Técnico, 12, 26.

    Google Scholar 

  • Walters, M., Figueiredo, E., Crouch, N. R., Winter, P. J. D., Smith, G. F., Zimmerman, H. G., & Mashop, B. K. (2011). Naturalized and invasive succulents of Southern Africa. Abc Taxa, 11. www.abctaxa.be

  • White Dove Farm. (2015). The living cactuis fence: Botanical name: Opuntia violacea santa rita. Common name: Blue Opuntia. http://www.whitedovesfarmfresh.com/Cactus-Fencing-Opunita-and-Prickly-Pear-Cereus-White-Dove-Farm.html

  • Wingren, A., Galbe, M., & Zacchi, G. (2003). Techno-economic evaluation of producing ethanol from softwood: Comparison of SSF and SHF and identification of bottlenecks. Biotechnology Progress, 19, 1109–1117.

    Article  CAS  PubMed  Google Scholar 

  • Wu, S. (2019). Extending shelf-life of fresh-cut potato with cactus Opuntia dillenii polysaccharide-based edible coatings. International Journal of Biological Macromolecules, 130, 640–644. https://doi.org/10.1016/j.ijbiomac.2019.03.022

  • Zambrano, J., Valera, A., Maffei, M., Materano, W., Quintero, I., & Graterol, K. (2017). Efecto de un recubrimiento comestible formulado con mucilago de cactus (Opuntia elatior Mill.) sobre la calidad de frutos de piña mínimamente procesados. Bioagro, 29(2), 129–136.

    Google Scholar 

  • Zambrano, J., Valera, A. M., Materano, W., Maffei, M., Quintero, I., Ruiz, Y., & Marcano-Belmonte, D. (2018). Effect of edible coatings based on cactus mucilage (Opuntia elatior Mill.) In the physicochemical and sensory properties of guava (Psidium guajava L.) under controlled storage. Revista de la Facultad de Agronomía, 35(4), 476–495.

    Google Scholar 

  • Zegbe, J. A., Mena-Covarrubias, J., & Dominguez-Canales, V. S. I. (2015). Cactus mucilage as a coating film to enhance shelf life of unprocessed guavas (Psidium guajava L.). Acta Horticulturae, 1067, 423–427.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guevara-Arauza, J.C. (2021). Industrial Uses of Opuntia spp. By-products. In: Ramadan, M.F., Ayoub, T.E.M., Rohn, S. (eds) Opuntia spp.: Chemistry, Bioactivity and Industrial Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-78444-7_37

Download citation

Publish with us

Policies and ethics