Skip to main content

Origin of the Domesticated Apples

  • Chapter
  • First Online:
The Apple Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Genomic, genetic, and archaeobotanical findings have confirmed that alongside interspecific hybridizations between Malus sieversii from Central Asia and wild species along the Silk Road, segmental duplications, point mutations, and clonal propagation have led to the fixation of traits in cultivated apples, unlike in annual crops. Moreover, there is minimal evidence for long-term intentional and targeted selection for fruit quality and horticultural traits; whereas, self-incompatibility, long juvenile phase, and clonal propagation have maintained genetic diversity in apples. Only modern (commercial) apple cultivars hint at the reduction of diversity and selection for commercially important traits. Furthermore, the wide phenotypic variations present in pre-breeding and advanced breeding material reveal that a great deal of genetic diversity is still maintained in the cultivated gene pool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allaby RG, Ware RL, Kistler L (2018) A re-evaluation of the domestication bottleneck from archaeogenomic evidence. Evol Appl 12:29–37. https://doi.org/10.1111/eva.12680

    Article  PubMed  PubMed Central  Google Scholar 

  • Bai Y, Dougherty L, Li M, Fazio G, Cheng L, Xu K (2012) A natural mutation-led truncation in one of the two aluminum-activated malate transporter-like genes at the Ma locus is associated with low fruit acidity in apple. Mol Genet Genomics 287:663–678

    CAS  PubMed  Google Scholar 

  • Burak M, Ergül A, Kazan K, Akçay ME, Yüksel C, Bakir M, Mutaf F, Akpinar AE, YaÅŸasin AS, AyanoÄŸlu H (2014) Genetic analysis of Anatolian apples (Malus sp.) by simple sequence repeats. J Syst Evol 52:580–588. https://doi.org/10.1111/jse.12099

    Article  Google Scholar 

  • Bus VGM, Laurens FND, Van de Weg WE, Rusholme RL, Rikkerink EHA, Gardiner SE, Bassett HCM, Plummer KM (2005) The Vh8 locus of a new gene-for-gene interaction between Venturia inaequalis and the wild apple Malus sieversii is closely linked to the Vh2 locus in Malus pumila R12740–7A. New Phytol 166:1035–1049

    Article  CAS  Google Scholar 

  • Bus VGM, Rikkerink EHA, Caffier V, Dural C, Plummer KM (2011) Revision of the nomenclature of the differential host-pathogen interactions of Venturia inaequalis and Malus. Annu Rev Phytopath 49:391–413

    Article  CAS  Google Scholar 

  • Campa M, Piazza S, Righetti L, Oh C, Conterno L, Borejsza-Wysocka E, Nagamangala KC, Beer SV, Aldwinckle HS, Malnoy M (2019) HIPM is a susceptibility gene of Malus spp.: Reduced expression reduces susceptibility to Erwinia amylovora. Mol Plant Microbe Inter 32:167–175

    Article  CAS  Google Scholar 

  • Chagné D, Lin-Wang K, Espley RV, Volz RK, How NM, Rouse S, Brendolise C, Carlisle CM, Kumar S, Silva ND, Micheletti D, McGhie T, Crowhurst RN, Storey RD, Velasco R, Hellens RP, Gardiner SE, Allan AC (2013) An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes. Plant Physiol 161:225–239

    Article  Google Scholar 

  • Cornille A, Antolín F, Garcia E, Vernesi C, Fietta A, Brinkkemper O, Kirleis W, Schlumbaum A, Roldán-Ruiz I (2019) A multifaceted overview of apple tree domestication. Trends Plant Sci 24:770–782. https://doi.org/10.1016/j.tplants.2019.05.007

    Article  CAS  PubMed  Google Scholar 

  • Cornille A, Giraud T, Smulders MJ, Roldán-Ruiz I, Gladieux P (2014) The domestication and evolutionary ecology of apples. Trends Genet 30:57–65

    Article  CAS  Google Scholar 

  • Cornille A, Gladieux P, Smulders MJ, Roldán-Ruiz I, Laurens F, Cam BL, Nersesyan A, Clavel J, Olonova M, Feugey L (2012) New insight into the history of domesticated apple: secondary contribution of the European wild apple to the genome of cultivated varieties. PLoS Genet 8:e1002703. https://doi.org/10.1371/journal.pgen.1002703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crosby JA, Janick J, Pecknold PC, Goffreda JC, Korban SS (1994) ‘Gold Rush’ apple. HortScience 29:827–828

    Article  Google Scholar 

  • Daccord N, Celton J-M, Linsmith G, Becker C, Choisne N, Schijlen E, van de Geest H, Bianco L, Micheletti D, Velasco R, Di Pierro EA, Gouzy J, Rees DJG, Guérif P, Muranty H, Durel C-E, Laurens F, Lespinasse Y, Gaillard S, Aubourg S, Quesneville H, Weigel D, van de Weg E, Troggio M, Bucher E (2017) High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat Genet 49:1099–1106. https://doi.org/10.1038/ng.3886

    Article  CAS  PubMed  Google Scholar 

  • De Paepe D, Valkenborg D, Noten B, Servaes K, Diels L, Loose MD, Van Droogenbroeck B, Voorspoels S (2015) Variability of the phenolic profiles in the fruits from old, recent and new apple cultivars cultivated in Belgium. Metabolomics 11:739–752. https://doi.org/10.1007/s11306-014-0730-2

    Article  CAS  Google Scholar 

  • Di Guardo M, Bink MCAM, Guerra W, Letschka T, Lozano L, Busatto N, Poles L, Tadiello A, Bianco L, Visser RGF, van de Weg E, Costa F (2017) Deciphering the genetic control of fruit texture in apple by multiple family-based analysis and genome-wide association. J Exp Bot 68:1451–1466. https://doi.org/10.1093/jxb/erx017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan N, Bai Y, Sun H, Wang N, Ma Y, Li M, Wang X, Jiao C, Legall N, Mao L, Wan S, Wang K, He T, Feng S, Zhang Z, Mao Z, Shen X, Chen X, Jiang Y, Wu S, Yin C, Ge S, Yang L, Jiang S, Xu H, Liu J, Wang D, Qu C, Wang Y, Zuo W, Xiang L, Liu C, Zhang D, Gao Y, Xu Y, Xu K, Chao T, Fazio G, Shu H, Zhong G-Y, Cheng L, Fei Z, Chen X (2017) Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement. Nat Commun 8:249. https://doi.org/10.1038/s41467-017-00336-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Sharkawy I, Liang D, Xu K (2015) Transcriptome analysis of an apple (Malus × domestica) yellow fruit somatic mutation identifies a gene network module highly associated with anthocyanin and epigenetic regulation. J Exp Bot 66:7359–7376. https://doi.org/10.1093/jxb/erv433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emeriewen OF, Richter K, Piazza S, Micheletti D, Broggini GAL, Berner T, Keilwagen J, Hanke M, Malnoy M, Peil A (2018) Towards map-based cloning of FB_Mfu10: Identification of a receptor-like kinase candidate gene underlying the Malus fusca fire blight resistance locus on linkage group 10. Mol Breed 38:106

    Article  Google Scholar 

  • Espley RV, Bovy A, Bava C, Jaeger SR, Tomes S, Norling C, Crawford J, Rowan D, McGhie TK, Brendolise C, Putterill J, Schouten HJ, Hellens RP, Allan AC (2013) Analysis of genetically modified red-fleshed apples reveals effects on growth and consumer attributes. Plant Biotechnol J 11:408–419. https://doi.org/10.1111/pbi.12017

    Article  CAS  PubMed  Google Scholar 

  • Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414–427. https://doi.org/10.1111/j.1365-313X.2006.02964.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahrentrapp J, Broggini GAL, Kellerhals M, Peil A, Richter K, Zini E, Gessler C (2013) A candidate gene for fire blight resistance in Malus × robusta 5 is coding for a CC–NBS–LRR. Tree Genet Genomes 9:237–251

    Article  Google Scholar 

  • Farneti B, Masuero D, Costa F, Magnago P, Malnoy M, Costa G, Vrhovsek U, Mattivi F (2015) Is there room for improving the nutraceutical composition of apple? J Agric Food Chem 63:2750–2759. https://doi.org/10.1021/acs.jafc.5b00291

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Liu F, Wang K, Wang D, Gong X, Liu L, Richards CM, Henk AD, Volk GM (2015) Genetic diversity of Malus cultivars and wild relatives in the Chinese National Repository of Apple Germplasm Resources. Tree Genet Genomes 11:106. https://doi.org/10.1007/s11295-015-0913-7

    Article  Google Scholar 

  • Gasic K, Han Y, Kertbundit S, Shulaev V, Iezzoni AF, Stover EW, Bell RL, Wisniewski ME, Korban SS (2009) Characteristics and transferability of new apple EST-derived SSRs to other Rosaceae species. Mol Breed 23:397–411. https://doi.org/10.1007/s11032-008-9243-x

    Article  CAS  Google Scholar 

  • Gharghani A, Zamani Z, Talaie A, Oraguzie NC, Fatahi R, Hajnajari H, Wiedow C, Gardiner SE (2009) Genetic identity and relationships of Iranian apple (Malus × domestica Borkh.) cultivars and landraces, wild Malus species and representative old apple cultivars based on simple sequence repeat (SSR) marker analysis. Genet Resour Crop Evol 56:829–842. https://doi.org/10.1007/s10722-008-9404-0

    Article  CAS  Google Scholar 

  • Gross BL, Henk AD, Richards CM, Fazio G, Volk GM (2014) Genetic diversity in Malus x domestica (Rosaceae) through time in response to domestication. Am J Bot 101:1770–1779

    Article  Google Scholar 

  • Gutierrez BL, Zhong G-Y, Brown SK (2018) Genetic diversity of dihydrochalcone content in Malus germplasm. Genet Resour and Crop Evol 65:1485–1502. https://doi.org/10.1007/s10722-018-0632-7

    Article  CAS  Google Scholar 

  • Gygax M, Gianfranceschi L, Liebhard R, Kellerhals M, Gessler C, Patocchi A (2004) Molecular markers linked to the apple scab resistance gene Vbj derived from Malus baccata jackii. Theor Appl Genet 109:1702–1709

    Article  CAS  Google Scholar 

  • Han Y, Gasic K, Marron B, Beever JE, Korban SS (2007) A BAC-based physical map of the apple genome. Genomics 89:630–637. https://doi.org/10.1016/j.ygeno.2006.12.010

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Zheng D, Vimolmangkang S, Khan MA, Beever JE, Korban SS (2011) Integration of physical and genetic maps in apple confirms whole-genome and segmental duplications in the apple genome. J Exp Bot 62:5117–5130. https://doi.org/10.1093/jxb/err215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harada T, Kurahashi W, Yanai M, Wakasa Y, Satoh T (2005) Involvement of cell proliferation and cell enlargement in increasing the fruit size of Malus species. Scient Hortic 105:447–456. https://doi.org/10.1016/j.scienta.2005.02.006

    Article  CAS  Google Scholar 

  • Höfer M, Meister A (2010) Genome size variation in Malus species. J Bot 2010:e480873. https://doi.org/10.1155/2010/480873

    Article  CAS  Google Scholar 

  • Jakobek L, Barron AR (2016) Ancient apple varieties from Croatia as a source of bioactive polyphenolic compounds. J Food Comp Anal 45:9–15. https://doi.org/10.1016/j.jfca.2015.09.007

    Article  CAS  Google Scholar 

  • Janick J, Cummins J, Brown S, Hemmat M (1996) Apples. In: Janick J, Moore JN (eds) Fruit breeding, vol 1. John Wiley & Sons, Tree and Tropical Fruits, pp 1–77

    Google Scholar 

  • Juniper BE, Mabberley DJ (2006) The story of the apple. Timber Press, Portland, OR

    Google Scholar 

  • Kellerhals M (2009) Introduction to apple (Malus × domestica). In: Folta KM, Gardiner SE (eds) Genetics and genomics of rosaceae. Springer, New York, NY, pp 73–84

    Chapter  Google Scholar 

  • Khan MA, Duffy B, Gessler C, Patocchi A (2006) QTL mapping of fire blight resistance in apple. Mol Breed 17:299–306

    Article  Google Scholar 

  • Khan MA, Olsen KM, Sovero V, Kushad MM, Korban SS (2014) Fruit quality traits have played critical roles in domestication of the apple. Plant Genome 7:1–18. https://doi.org/10.3835/plantgenome2014.04.0018

    Article  CAS  Google Scholar 

  • Korban SS, Tartarini S (2009) Apple structural genomics. In: Folta K, Gardiner S (eds) Genetics and genomics of rosaceae. Springer-Science, NY, pp 85–119

    Chapter  Google Scholar 

  • Korban SS, Wannarat W, Rayburn CM, Tatum TC, Rayburn AL (2009) Genome size and nucleotypic variation in Malus germplasm. Genome 52:148–155. https://doi.org/10.1139/G08-109

    Article  CAS  PubMed  Google Scholar 

  • Kostick SA, Norelli JL, Evans KM (2019) Novel metrics to classify fire blight resistance of 94 apple cultivars. Plant Pathol 68:985–996. https://doi.org/10.1111/ppa.13012

    Article  CAS  Google Scholar 

  • Kron P, Husband BC (2009) Hybridization and the reproductive pathways mediating gene flow between native Malus coronaria and domestic apple, M. domestica. Botany 87:864–874. https://doi.org/10.1139/B09-045

  • Kumar S, Raulier P, Chagné D, Whitworth C (2014) Molecular-level and trait-level differentiation between the cultivated apple (Malus × domestica Borkh.) and its main progenitor Malus sieversii. Plant Genet Resour 12:330–340

    Article  Google Scholar 

  • Lin-Wang K, Bolitho K, Grafton K, Kortstee A, Karunairetnam S, McGhie TK, Espley RV, Hellens RP, Allan AC (2010) An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biol 10:50. https://doi.org/10.1186/1471-2229-10-50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma B, Chen J, Zheng H, Fang T, Ogutu C, Li S, Han Y, Wu B (2015) Comparative assessment of sugar and malic acid composition in cultivated and wild apples. Food Chem 172:86–91. https://doi.org/10.1016/j.foodchem.2014.09.032

    Article  CAS  PubMed  Google Scholar 

  • Ma B, Liao L, Peng Q, Fang T, Zhou H, Korban SS, Han Y (2017) Reduced representation genome sequencing reveals patterns of genetic diversity and selection in apple. J Integr Plant Biol 59:190–204. https://doi.org/10.1111/jipb.12522

    Article  CAS  PubMed  Google Scholar 

  • Ma B, Yuan Y, Gao M, Li C, Ogutu C, Li M, Ma F (2018) Determination of predominant organic acid components in Malus species: correlation with apple domestication. Metabolites 8:74. https://doi.org/10.3390/metabo8040074

    Article  CAS  PubMed Central  Google Scholar 

  • Maere S, Bodt SD, Raes J, Casneuf T, Montagu MV, Kuiper M, de Peer YV (2005) Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci USA 102:5454–5459. https://doi.org/10.1073/pnas.0501102102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malladi A, Hirst PM (2010) Increase in fruit size of a spontaneous mutant of ‘Gala’ apple (Malus ×domestica Borkh.) is facilitated by altered cell production and enhanced cell size. J Exp Bot 61:3003–3013. https://doi.org/10.1093/jxb/erq134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer RS, DuVal AE, Jensen HR (2012) Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytol 196:29–48. https://doi.org/10.1111/j.1469-8137.2012.04253.x

    Article  PubMed  Google Scholar 

  • Meyer RS, Purugganan MD (2013) Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet 14:840–852. https://doi.org/10.1038/nrg3605

    Article  CAS  PubMed  Google Scholar 

  • Miller AJ, Gross BL (2011) From forest to field: perennial fruit crop domestication. Am J Bot 98:1389–1414. https://doi.org/10.3732/ajb.1000522

    Article  PubMed  Google Scholar 

  • Morimoto T, Banno K (2015) Genetic and physical mapping of Co, a gene controlling the columnar trait of apple. Tree Genet Genomes 11:807. https://doi.org/10.1007/s11295-014-0807-0

    Article  Google Scholar 

  • Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EHA, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ, Laing WA, McArtney S, Nain B, Ross GS, Snowden KC, Souleyre EJF, Walton EF, Yauk Y-K (2006) Analyses of expressed sequence tags from apple. Plant Physiol 141:147–166. https://doi.org/10.1104/pp.105.076208

    Article  PubMed  PubMed Central  Google Scholar 

  • Nikiforova SV, Cavalieri D, Velasco R, Goremykin V (2013) Phylogenetic analysis of 47 chloroplast genomes clarifies the contribution of wild species to the domesticated apple maternal line. Mol Biol Evol 30:1751–1760. https://doi.org/10.1093/molbev/mst092

    Article  CAS  PubMed  Google Scholar 

  • Noiton D, Shelbourne C (1992) Quantitative genetics in an apple breeding strategy. Euphytica 60:213–219

    Google Scholar 

  • Ordidge M, Kirdwichai P, Baksh MF, Venison EP, Gibbings JG, Dunwell JM (2018) Genetic analysis of a major international collection of cultivated apple varieties reveals previously unknown historic heteroploid and inbred relationships. PLoS One 13:e0202405. https://doi.org/10.1371/journal.pone.0202405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paran I, van der Knaap E (2007) Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper. J Exp Bot 58:3841–3852. https://doi.org/10.1093/jxb/erm257

    Article  CAS  PubMed  Google Scholar 

  • Patocchi A, Walser M, Tartarini S, Broggini GA, Gennari F, Sansavini S, Gessler C (2005) Identification by genome scanning approach (GSA) of a microsatellite tightly associated with the apple scab resistance gene Vm. Genome 48:630–636

    Article  CAS  Google Scholar 

  • Peace CP, Bianco L, Troggio M, van de Weg E, Howard NP, Cornille A, Durel C-E, Myles S, Migicovsky Z, Schaffer RJ, Costes E, Fazio G, Yamane H, van Nocker S, Gottschalk C, Costa F, Chagné D, Zhang X, Patocchi A, Gardiner SE, Hardner C, Kumar S, Laurens F, Bucher E, Main D, Jung S, Vanderzande S (2019) Apple whole genome sequences: recent advances and new prospects. Hortic Res 6:1–24. https://doi.org/10.1038/s41438-019-0141-7

    Article  Google Scholar 

  • Pompili V, Costa LD, Piazza S, Pindo M, Malnoy M (2020) Reduced fire blight susceptibility in apple cultivars using a high-efficiency CRISPR/Cas9-FLP/FRT-based gene editing system. Plant Biotech J 18:845–858

    Article  CAS  Google Scholar 

  • Singh J, Sun M, Cannon S, Wu J, Khan A (2021) An accumulation of genetic variation and selection across the disease-relatedgenes during apple domestication. Tree Geneti Genomes 17:1–11

    Google Scholar 

  • Shulaev V, Korban SS, Sosinski B, Abbott AG, Aldwinckle HS, Folta KM, Iezzoni A, Main D, Arús P, Dandekar AM, Lewers K, Brown SK, Davis TM, Gardiner SE, Potter D, Veilleux RE (2008) Multiple models for rosaceae genomics. Plant Physiol 147:985–1003. https://doi.org/10.1104/pp.107.115618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spengler RN (2019) Origins of the apple: the role of megafaunal mutualism in the domestication of Malus and rosaceous trees. Front Plant Sci 10:617. https://doi.org/10.3389/fpls.2019.00617

    Article  PubMed  PubMed Central  Google Scholar 

  • Stushnoff C, McSay AE, Luby J, Forsline PL (2002) Diversity of phenolic antioxidant content and radical scavenging capacity in the USDA apple germplasm core collection. Acta Hortic 305–312. https://doi.org/10.17660/ActaHortic.2003.623.34

  • Tatum TC, Stepanovic S, Biradar DP, Rayburn AL, Korban SS (2005) Variation in nuclear DNA content in Malus species and cultivated apples. Genome 48:924–930

    Article  CAS  Google Scholar 

  • Treutter D (2010) Managing phenol contents in crop plants by phytochemical farming and breeding—visions and constraints. Int J Mol Sci 11:807–857

    Article  CAS  Google Scholar 

  • USDA (2014) National genetic resources program. Germplasm Resources Information Network (GRIN). USDA, ARS Natl. Germplasm Resources Laboratory, Beltsville, MD. http://www.ars-grin.gov/npgs/index.html. Accessed 5 May 2017

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagné D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouzé P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel C-E, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839. https://doi.org/10.1038/ng.654

    Article  CAS  PubMed  Google Scholar 

  • Vogt I, Wohner T, Richter K, Flachowsky H, Sundin GW, Wensing A, Savory EA, Geider K, Day B, Hanke M, Peil A (2013) Gene-for-gene relationship in the host-pathogen system Malus × robusta 5-Erwinia amylovora. New Phytol 197:1262–1275

    Article  CAS  Google Scholar 

  • Volk GM, Henk AD, Baldo A, Fazio G, Chao CT, Richards CM (2015) Chloroplast heterogeneity and historical admixture within the genus Malus. Am J Bot 102:1198–1208. https://doi.org/10.3732/ajb.1500095

    Article  PubMed  Google Scholar 

  • Volz RK, McGhie TK (2011) Genetic variability in apple fruit polyphenol composition in Malus × domestica and Malus sieversii germplasm grown in New Zealand. J Agric Food Chem 59:11509–11521. https://doi.org/10.1021/jf202680h

    Article  CAS  PubMed  Google Scholar 

  • Wagner I, Maurer WD, Lemmen P, Schmitt HP, Wagner M, Binder M, Patzak P (2014) Hybridization and genetic diversity in wild apple (Malus sylvestris (L.) Mill) from various regions in Germany and from Luxembourg. Silvae Genet 63:81–93. https://doi.org/10.1515/sg-2014-0012

    Article  Google Scholar 

  • Yao L, Zheng X, Cai D, Gao Y, Wang K, Cao Y, Teng Y (2010) Exploitation of Malus EST-SSRs and the utility in evaluation of genetic diversity in Malus and Pyrus. Genet Resour Crop Evol 57:841–851. https://doi.org/10.1007/s10722-009-9524-1

    Article  CAS  Google Scholar 

  • Zhang L, Hu J, Han X, Li J, Gao Y, Richards CM, Zhang C, Tian Y, Liu G, Gul H, Wang D, Tian Y, Yang C, Meng M, Yuan G, Kang G, Wu Y, Wang K, Zhang H, Wang D, Cong P (2019) A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour. Nat Commun 10:1–13. https://doi.org/10.1038/s41467-019-09518-x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Awais Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, A., Gutierrez, B., Chao, C.T., Singh, J. (2021). Origin of the Domesticated Apples. In: Korban, S.S. (eds) The Apple Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-74682-7_17

Download citation

Publish with us

Policies and ethics