Skip to main content

Causes and Consequences of Changes in Riparian Vegetation for Plant Litter Decomposition Throughout River Networks

  • Chapter
  • First Online:
The Ecology of Plant Litter Decomposition in Stream Ecosystems

Abstract

Riparian ecosystems occupy land-water interfaces along upland-to-lowland and coastal gradients of river networks. Global changes in riparian vegetation alter the types and processing of organic matter at these interfaces and throughout river networks. Dominant pathways of structural changes in riparian vegetation are associated with (i) temperature increases and changes in precipitation and hydrology, (ii) range expansion/contraction of native and non-native species, (iii) altered land-use for agriculture/forest plantations and harvesting, and urban development, (iv) shifts in disturbance regimes, such as fire, disease, pest outbreaks, and storms, and (v) saltwater intrusion. Widespread changes in riparian vegetation alter above and belowground carbon (C) stores and shift the relative proportion of algal and detrital basal resources in aquatic ecosystems. Global changes in riparian vegetation likely shift the sources and sinks of organic matter along river networks from upland headwaters to lowland rivers and coastal wetlands. Climate and global changes are expanding and contracting continental vegetation species ranges while sea-level rise and saltwater intrusion are transgressing coastal ecosystems landward. Understanding the general pathways and functional consequences of changes in riparian vegetation is vital to conserving ecosystem functions and services throughout continental river networks and coastal wetlands that are supported by organic matter processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acuña, V., Giorgi, A., Muñoz, I., Sabater, F. & Sabater, S. (2007). Meteorological and riparian influences on organic matter dynamics in a forested Mediterranean stream. Journal of the North American Benthological Society, 26(1), 54–69.

    Google Scholar 

  • Acuña, V., & Tockner, K. (2010). The effects of alterations in temperature and flow regime on organic carbon dynamics in Mediterranean river networks. Global Change Biology, 16(9), 2638–2650. https://doi.org/10.1111/j.1365-2486.2010.02170.x.

    Article  Google Scholar 

  • Aitkenhead-Peterson, J. A., Steele, M. K., Nahar, N., & Santhy, K. (2009). Dissolved organic carbon and nitrogen in urban and rural watersheds of south-central Texas: Land use and land management influences. Biogeochemistry, 96(1), 119–129. https://doi.org/10.1007/s10533-009-9348-2.

    Article  CAS  Google Scholar 

  • Allan, J. D. (2004). Landscapes and riverscapes: The influence of land use on stream ecosystems. Annual Review of Ecology Evolution and Systematics, 35, 257–284. https://doi.org/10.1146/annurev.ecolsys.35.120202.110122.

    Article  Google Scholar 

  • Ardón, M., Helton, A. M. & Bernhardt, E. S. (2016). Drought and saltwater incursion synergistically reduce dissolved organic carbon export from coastal freshwater wetlands. Biogeochemistry, 127(2–3), 411–426.

    Google Scholar 

  • Ardón, M., Morse, J. L., Colman, B. P., & Bernhardt, E. S. (2013). Drought-induced saltwater incursion leads to increased wetland nitrogen export. Global Change Biology, 19(10), 2976–2985. https://doi.org/10.1111/gcb.12287.

    Article  PubMed  Google Scholar 

  • Aufdenkampe, A. K., Mayorga, E., Raymond, P. A., Melack, J. M., Doney, S. C., Alin, S. R., Aalto, R. E.‚ & Yoo, K. (2011). Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Frontiers in Ecology and the Environment, 9(1), 53–60.

    Google Scholar 

  • Ball, B. A., Kominoski, J. S., Adams, H. E., Jones, S. E., Kane, E. S., Loecke, T. D., Mahaney, W. M., Martina, J. P., Prather, C. M., Robinson, T. M., & Solomon, C. T. (2010). Direct and terrestrial vegetation-mediated effects of environmental change on aquatic ecosystem processes. BioScience, 60, 590–601.

    Google Scholar 

  • Barnes, R. T., Smith, R. L.‚ & Aiken, G. R. (2012). Linkages between denitrification and dissolved organic matter quality, Boulder Creek watershed, Colorado. Journal of Geophysical Research: Biogeosciences, 117(G1).

    Google Scholar 

  • Battin, T. J., Luyssaert, S., Kaplan, L. A., Aufdenkampe, A. K., Richter, A. & Tranvik, L. J. (2009). The boundless carbon cycle. Nature GeoScience, 2: 598–600.

    Google Scholar 

  • Batzer, D. P., & Sharitz, R. R. (Eds.). (2014). Ecology of freshwater and Estuarine Wetlands. University of California Press.

    Google Scholar 

  • Benda, L., Poff, N. L., Miller, D., Dunne, T., Reeves, G., Pess, G., & Pollock, M. (2004). The network dynamics hypothesis: How channel networks structure riverine habitats. BioScience, 54, 413–427.

    Google Scholar 

  • Benfield, E. F., Webster, J. R., Tank, J. L., & Hutchens, J. J. (2001). Long-term patterns in leaf breakdown in streams in response to watershed logging. International Review of Hydrobiology, 86, 467–474.

    Article  Google Scholar 

  • Bennett, E. M., Peterson, G. D., & Gordon, L. J. (2009). Understanding relationships among multiple ecosystem services. Ecology Letters, 12(12), 1394–1404. https://doi.org/10.1111/j.1461-0248.2009.01387.x.

    Article  PubMed  Google Scholar 

  • Benstead, J. P., & Huryn, A. D. (2011). Extreme seasonality of litter breakdown in an arctic spring-fed stream is driven by shredder phenology, not temperature. Freshwater Biology, 56(10), 2034–2044. https://doi.org/10.1111/j.1365-2427.2011.02635.x.

    Article  Google Scholar 

  • Bernhardt, E. S., Blaszczak, J. R., Ficken, C. D., Fork, M. L., Kaiser, K. E.‚ & Seybold, E. C. (2017). Control points in ecosystems: Moving beyond the hot spot hot moment concept. Ecosystems, 20(4), 665–682.

    Google Scholar 

  • Booth, D. B., Roy, A. H., Smith, B., & Capps, K. A. (2016). Global perspectives on the urban stream syndrome. Freshwater Science, 35, 412–420.

    Article  Google Scholar 

  • Bouillon, S., Borges, A. V., Castañeda-Moya, E., Diele, K., Dittmar, T., Duke, N. C., Kristensen, E., Lee, S. Y., Marchand, C., Middelburg, J. J., Rivera‐Monroy, V. H., Smith III, T. J., & Twilley, R. R. (2008). Mangrove production and carbon sinks: A revision of global budget estimates. Global Biogeochemical Cycles, 22(2). https://doi.org/10.1029/2007gb003052

  • Boyero, L., Pearson, R. G., Hui, C., Gessner, M. O., Pérez, J., Alexandrou, M. A., Graça, M. A. S., Cardinale, B. J., Albariño, R. J., Arunachalam, M., Barmuta, L. A., Boulton, A. J., Bruder, A., Callisto, M., Chauvet, E., Death, R. G., Dudgeon, D., Encalada, A. C., Ferreira, V., … Yule, C. M. (2016). Biotic and abiotic variables influencing plant litter breakdown in streams: A global study. Proceedings of the Royal Society B: Biological Sciences, 283(1829). https://doi.org/10.1098/rspb.2015.2664

  • Castañeda-Moya, E., Twilley, R. R., & Rivera-Monroy, V. H. (2013). Allocation of biomass and net primary productivity of mangrove forests along environmental gradients in the Florida Coastal Everglades, USA. Forest Ecology and Management, 307, 226–241.

    Article  Google Scholar 

  • Cavanaugh, K. C., Kellner, J. R., Forde, A. J., Gruner, D. S., Parker, J. D., Rodriguez, W., et al. (2014). Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.1315800111.

    Article  Google Scholar 

  • Cawley, K. M., Yamashita, Y., Maie, N., & Jaffe, R. (2014). Using optical properties to quantify fringe mangrove inputs to the dissolved organic matter (DOM) pool in a subtropical estuary. Estuaries and Coasts, 37, 399–410.

    Article  CAS  Google Scholar 

  • Cebrian, J., & Lartigue, J. (2004). Patterns of herbivory and decomposition in aquatic and terrestrial ecosystems. Ecological Monographs, 74(2), 237–259. https://doi.org/10.1890/03-4019.

    Article  Google Scholar 

  • Chambers, C. P., Whiles, M. R., Rosi-Marshall, E. J., Tank, J. L., Royer, T. V., Griffiths, N. A., Evans-White, M. A., & Stojak, A. R. (2010). Responses of stream macroinvertebrates to Bt maize leaf detritus. Ecological Applications, 20(7), 1949–1960. https://doi.org/10.1890/09-0598.1

  • Chapman, S. K., Hayes, M. A., Kelly, B., & Langley, J. A. (2019). Exploring the oxygen sensitivity of wetland soil carbon mineralization. Biology Letters, 15(1). https://doi.org/10.1098/rsbl.2018.0407

  • Charles, S. P., Kominoski, J. S., Armitage, A. R., Guo, H., Weaver, C. A., & Pennings, S. C. (2020). Quantifying how changing mangrove cover affects ecosystem carbon storage in coastal wetlands. Ecology, 101(2). https://doi.org/10.1002/ecy.2916

  • Charles, S. P., Kominoski., J. S. Troxler, T. G., Gaiser, E. E., Servais, S., Wilson, B. J., Davis, S. E., Sklar, F. H., Coronado-Molina, C., Madden, C. J., & Kelly, S. (2019). Experimental saltwater intrusion drives rapid soil elevation and carbon loss in freshwater and brackish Everglades marshes. Estuaries and Coasts, 42, 1868–1881.

    Google Scholar 

  • Chellaiah, D., & Yule, C. M. (2018). Riparian buffers mitigate impacts of oil palm plantations on aquatic macroinvertebrate community structure in tropical streams of Borneo. Ecological Indicators, 95, 53–62.

    Article  Google Scholar 

  • Chmura, G. L., Anisfeld, S. C., Cahoon, D. R., & Lynch, J. C. (2003). Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles, 17(4).

    Google Scholar 

  • Classen-Rodríguez, L., Gutiérrez-Fonseca, P. E., & Ramírez, A. (2019). Leaf litter decomposition and macroinvertebrate assemblages along an urban stream gradient in Puerto Rico. Biotropica, 51(5), 641–651. https://doi.org/10.1111/btp.12685.

    Article  Google Scholar 

  • Coldren, G. A., Langley, J. A., Feller, I. C., & Chapman, S. K. (2019). Warming accelerates mangrove expansion and surface elevation gain in a subtropical wetland. Journal of Ecology, 107, 79–90.

    Article  Google Scholar 

  • Cole J. J., Prairie Y. T., Caraco N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg, J. J., & Melack, J. (2007). Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems, 10, 172–185.

    Google Scholar 

  • Collen, P., Keay, E. J., & Morrison, B. R. S. (2004). Processing of pine (Pinus sylvestris) and birch (Betula pubescens) leaf material in a small river system in the northern Cairngorms, Scotland. In European geosciences union (Vol. 8). Retrieved from https://hal.archives-ouvertes.fr/hal-00304945

  • Cross, W. F., Wallace, J. B., Rosemond, A. D., & Eggert, S. L. (2006). Whole-system nutrient enrichment increases secondary production in a detritus-based ecosystem. Ecology, 87, 1556–1565.

    Article  CAS  PubMed  Google Scholar 

  • Crutsinger, G. M., Rudman, S. M., Rodriguez-Cabal, M. A., McKown, A. D., Sato, T., Macdonald, A. M., Heavyside, J., Geraldes, A., Hart, E. M., LeRoy, C. J., & El-Sabaawi, R. W. (2014). Testing a “genes-to-ecosystems” approach to understanding aquatic-terrestrial linkages. Molecular Ecology, 23(23), 5888–5903. https://doi.org/10.1111/mec.12931

  • Dahl, T., & Stedman, S. (2013). Status and trends of wetlands in the coastal watersheds of the Conterminous United States 2004 to 2009.

    Google Scholar 

  • Daily, G. C., Polasky, S., Goldstein, J., Kareiva, P. M., Mooney, H. A., Pejchar, L., Ricketts, T. H., Salzman, J., Shallenberger, R. (2009). Ecosystem services in decision making: time to deliver. Frontiers in Ecology and the Environment, 7, 21–28.

    Google Scholar 

  • Datry, T., Boulton, A. J., Bonada, N., Fritz, K., Leigh, C., Sauquet, E., Tockner, K., Hugueny, B., & Dahm, C. N. (2018). Flow intermittence and ecosystem services in rivers of the Anthropocene. Journal of Applied Ecology, 55, 353–364.

    Google Scholar 

  • Davies, P. M. (2010). Climate change implications for river restoration in global biodiversity hotspots. Restoration Ecology, 18, 261–268.

    Article  Google Scholar 

  • Demars, B. O. L., Manson, J. R., Ólafsson, J. S., Gíslason, G. M., & Friberg, N. (2011). Stream hydraulics and temperature determine the metabolism of geothermal Icelandic streams. Knowledge and Management of Aquatic Ecosystems, 402, 5. https://doi.org/10.1051/kmae/2011046.

    Article  Google Scholar 

  • Dessu, S. B., Price, R. M., Troxler, T. G., & Kominoski, J. S. (2018). Effects of sea-level rise and freshwater management on long-term water levels and water quality in the Florida Coastal Everglades. Journal of Environmental Management, 211, 164–176.

    Article  PubMed  Google Scholar 

  • Dodds, W. K., Bruckerhoff, L., Batzer, D., Schechner, A., Pennock C., Renner, E., Tromboni, F., Bigham, K., & Grieger, S. (2019). The freshwater biome gradient framework: Predicting macroscale properties based on latitude, altitude, and precipitation. Ecosphere, 10, e02786.

    Google Scholar 

  • Dodds, W. K., Gido, K., Whiles, M. R., Daniels, M. D., & Grudzinski, B. P. (2015). The stream biome gradient concept: Factors controlling lotic systems across broad biogeographic scales. Freshwater Science, 34, 1–19. https://doi.org/10.1086/679756.

    Article  Google Scholar 

  • Dominick, D. S., & O’Neill, M. P. (1998). Effects of flow augmentation on stream channel morphology and riparian vegetation: Upper Arkansas River Basin, Colorado. Wetlands, 18, 591–607.

    Article  Google Scholar 

  • Doughty, C. D., Langley, J. A., Walker, W. C., Schaub, R., & Chapman, S. K. (2015). Mangrove range expansion increases coastal wetland carbon storage. Estuaries and Coasts, 39, 385–396.

    Article  Google Scholar 

  • Downing, J. A., Cole, J. J., Middelburg, J. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., Prairie, Y. T., & Laube, K. A. (2008). Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. Global Biogeochemical Cycles, 22(1). https://doi.org/10.1029/2006gb002854

  • Encalada, A. C., CAlles, J., Ferreira, V., Canhoto, C. M., & Graça, M. A. S. (2010). Riparian land use and the relationship between the benthos and litter decomposition in tropical montane streams. Freshwater Biology, 55(8), 1719–1733. https://doi.org/10.1111/j.1365-2427.2010.02406.x

  • Farfan, L., D’Sa, E., Liu, K., & Rivera-Monroy, V. H. (2014). Tropical cyclone impacts on coastal regions: The case of the Yucatan and the Baja California Peninsulas, Mexico. Estuaries and Coasts, 37, 1388–1402.

    Article  CAS  Google Scholar 

  • Ferreira, V., Boyero, L., Calvo, C., Correa, F., Figueroa, R., Gonçalves Jr., J. F., Goyenola, G., Graça, M. A. S., Hepp, L. U., Kariuki, S., López-Rodríguez, A., Mazzeo, N., M’Erimba, C., Monroy, S., Peil, A., Pozo, J., Rezende, R., & Teixeira-de-Mello, F. (2019). A global assessment of the effects of Eucalyptus plantations on stream ecosystem functioning. Ecosystems, 22, 629–642.

    Google Scholar 

  • Ferreira, V., Castela, J., Rosa, P., Tonin, A. M., Boyero, L., & Graca, M. A. S. (2016). Aquatic hyphomycetes, benthic macroinvertebrates and leaf litter decomposition in streams naturally differing in riparian vegetation. Aquatic Ecology, 50, 711–725.

    Article  CAS  Google Scholar 

  • Follstad Shah, J. J., Kominoski, J. S., Ardón, M., Dodds, W. K., Gessner, M. O., Griffiths, N. A., Hawkins, C. P., Johnson, S. L., Lecerf, A., LeRoy, C. J.‚ & Manning, D. W. (2017). Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers. Global Change Biology, 23(8), 3064–3075.

    Google Scholar 

  • García, L., Richardson, J. S., & Pardo, I. (2012). Leaf quality influences invertebrate colonization and drift in a temperate rainforest stream. Canadian Journal of Fisheries and Aquatic Sciences, 69(10), 1663–1673. https://doi.org/10.1139/F2012-090.

    Article  Google Scholar 

  • Gee, J. H. R., & Smith, B. D. (1997). Benthic invertebrates in the headwaters of the Wye and Severn: Effects of forestry and clearfelling. Hydrological and Earth Systems Science, 1, 549–556.

    Article  Google Scholar 

  • Giri, C. P., & Long, J. (2014). Mangrove reemergence in the northernmost range limit of eastern Florida. Proceedings of the National Academy of Sciences of the United States of America, 111, E1447–E1448.

    CAS  PubMed  PubMed Central  Google Scholar 

  • González, E., Felipe-Lucia, M. R., Bourgeois, B., Boz, B., Nilsson, C., Palmer, G. Sher, A. A. (2017). Integrative conservation of riparian zones. Biological Conservation, 211, 20–29.

    Google Scholar 

  • Graça, M. A. S., & Cressa, C. (2010). Leaf quality of some tropical and temperate tree species as food resource for stream shredders. International Review of Hydrobiology, 95(1), 27–41. https://doi.org/10.1002/iroh.200911173.

    Article  Google Scholar 

  • Griffiths, N. A., Tank, J. L., Royer, T. V., Rosi-Marshall, E. J., Whiles, M. R., Chambers, C. P., Frauendorf, T. C., & Evans-White, M. A. (2009). Rapid decomposition of maize detritus in agricultural headwater streams. Ecological Applications, 19(1), 133–142. https://doi.org/10.1890/07-1876.1

  • Guo, H., Weaver, C., Charles, S. P., Whitt, A., Dastidar, S., D’Odorico, P., Fuentes, J. D., Kominoski, J. S., Armitage, A. R., & Pennings, S. C. (2017). Coastal regime shifts: Rapid responses of coastal wetlands to changes in mangrove cover. Ecology, 98(3), 762–772. https://doi.org/10.1002/ecy.1698

  • Haddad, N. M., Brudvig, L. A., Clobert, J., Davies, K. F., Gonzalez, A., Holt, R. D., Lovejoy, T. E., Sexton, J. O., Austin, M. P., Collins, C. D., Cook, W. M., Damschen, E. I., Ewers, R. M., Foster, B. L., Jenkins, C. N., King, A. J., Laurance, W. F., Levey, D. J., Margules, C. R., Melbourne, B. A., … Townshend, J. R. (2015). Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances, 1, e1500052.

    Google Scholar 

  • Hall, R. O., Jr., & Meyer, J. L. (1998). The trophic significance of bacteria in a detritus-based stream food web. Ecology, 79, 1995–2012.

    Article  Google Scholar 

  • Herbert, E. R., Boon, P., Burgin, A. J., Neubauer, S. C., Franklin, R. B., Ardón, M., Hopfensperger, K. N., Lamers, L. P., & Gell, P. (2015). A global perspective on wetland salinization: Ecological consequences of a growing threat to freshwater wetlands. Ecosphere, 6, 1–43.

    Google Scholar 

  • Herbert, E. R., Schubauer-Berigan, J., & Craft, C. B. (2018). Differential effects of chronic and acute simulated seawater intrusion on tidal freshwater marsh carbon cycling. Biogeochemistry, 138, 137–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman, M. T., & Rohde, R. F. (2011). Rivers through time: Historical changes in the riparian vegetation of the semi-arid, winter rainfall region of South Africa in response to climate and land use. Journal of the History of Biology, 44, 59–80.

    Article  PubMed  Google Scholar 

  • Holdridge, L. R. (1947). Determination of world plant formations from simple climatic data. Science, 105(2727), 367–368. https://doi.org/10.1126/science.105.2727.367.

    Article  CAS  PubMed  Google Scholar 

  • Huryn, A. D., Butz Huryn, V. M., Arbuckle, C. J., & Tsomides, L. (2002). Catchment land-use, macroinvertebrates and detritus processing in headwater streams: Taxonomic richness versus function. Freshwater Biology, 47(3), 401–415. https://doi.org/10.1046/j.1365-2427.2002.00812.x.

    Article  Google Scholar 

  • Jackrel, S. L., & Wootton, J. T. (2014). Local adaptation of stream communities to intraspecific variation in a terrestrial ecosystem subsidy. Ecology, 95(1), 37–43. https://doi.org/10.1890/13-0804.1.

    Article  PubMed  Google Scholar 

  • Johnson, W. C. (1998). Adjustment of riparian vegetation to river regulation in the Great Plains, USA. Wetlands, 18, 608–618.

    Article  Google Scholar 

  • Junk, W. J., Bayley, P. B., & Sparks, R. E. (1989). The flood pulse concept in river-floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences, 106, 110–127.

    Google Scholar 

  • Kelleway, J. J., Saintilan, N., Macreadie, P. I., Skilbeck, C. G., Zawadzki, A., & Ralph, P. J. (2016). Seventy years of continuous encroachment substantially increases “blue carbon” capacity as mangroves replace intertidal salt marshes. Global Change Biology, 22(3), 1097–1109. https://doi.org/10.1111/gcb.13158.

    Article  PubMed  Google Scholar 

  • Knapp, A. K., Briggs, J. M., Collins, S. L., Archer, S. R., Bret-Harte, M. S., Ewers, B. E., Peters, D. P., Young, D. R., Shaver, G. R., Pendall, E., & Cleary, M. B. (2008). Shrub encroachment in North American grasslands: Shifts in growth form dominance rapidly alters control of ecosystem carbon inputs. Global Change Biology, 14(3), 615–623. https://doi.org/10.1111/j.1365-2486.2007.01512.x

  • Koch, G., Childers, D. L., Staehr, P. A., Price, R. M., Davis, S. E., & Gaiser, E. E. (2012). Hydrological conditions control P loading and aquatic metabolism in an oligotrophic, subtropical estuary. Estuaries and Coasts, 35, 292–307.

    Article  CAS  Google Scholar 

  • Kominoski, J. S., Follstad Shah, J. J., Canhoto, C., Fischer, D. G., Giling, D. P., González, E., Griffiths, N. A., Larrañaga, A., LeRoy, C. J., Mineau, M. M., McElarney, Y. R., Shirley, S. M., Swan, C. M., & Tiegs, S. D. (2013). Forecasting functional implications of global changes in riparian plant communities. Frontiers in Ecology and the Environment, 11(8), 26. https://doi.org/10.1890/120056

  • Kominoski, J. S., Marczak, L. B., & Richardson, J. S. (2011). Riparian forest composition affects stream litter decomposition despite similar microbial and invertebrate communities. Ecology, 92, 151–159.

    Article  PubMed  Google Scholar 

  • Kominoski J. S., Rehage, J., Anderson, W., Boucek, R., Briceno, H. O., Bush, M. R., Dreschel, T. W., Heithaus, M. R., Jaffe, R., Larsen, L., Matich, P., McVoy, C., Rosenblatt, A. E., & Troxler, T. (2019). Ecosystem fragmentation and connectivity-legacies and future implications of a restored Everglades. In D. L. Childers, E. Gaiser, & L. Ogden (Eds.), The dynamics of social-ecological transformation in the South Florida landscape (pp. 73–96). Oxford University Press.

    Google Scholar 

  • Kominoski, J. S., & Rosemond, A. D. (2012). Conservation from the bottom up: Forecasting effects of global change on dynamics of organic matter and management needs for river networks. Freshwater Science, 31, 51–68.

    Article  Google Scholar 

  • Kominoski, J. S., Rosemond, A. D., Benstead, J. P., Gulis, V., & Manning, D. W. P. (2018). Experimental nitrogen and phosphorus additions increase rates of stream ecosystem respiration and carbon loss. Limnology and Oceanography, 63(1), 22–36. https://doi.org/10.1002/lno.10610.

    Article  CAS  Google Scholar 

  • Krauss, K. W., McKee, K. L., Lovelock, C. E., Cahoon, D. R., Saintilan, N., Reef, R.‚ & Chen, L. (2014). How mangrove forests adjust to rising sea level. New Phytologist, 202(1), 19–34.

    Google Scholar 

  • Kreutzweiser, D. P., Good, K. P., Capell, S. S., & Holmes, S. B. (2008). Leaf-litter decomposition and macroinvertebrate communities in boreal forest streams linked to upland logging disturbance. Journal of the North American Benthological Society, 27(1), 1–15. https://doi.org/10.1899/07-034R.1.

    Article  Google Scholar 

  • Larson, D. M., Dodds, W. K., & Veach, A. M. (2018). Removal of woody riparian vegetation substantially altered a stream ecosystem in an otherwise undisturbed grassland watershed. Ecosystems, 22, 64–76.

    Article  Google Scholar 

  • Lecerf, A., & Chauvet, E. (2008). Intraspecific variability in leaf traits strongly affects alder leaf decomposition in a stream. Basic and Applied Ecology, 9(5), 598–605.

    Google Scholar 

  • Lecerf, A., & Richardson, J. S. (2010). Litter decomposition can detect effects of high and moderate levels of forest disturbance on stream condition. Forest Ecology and Management, 259, 2433–2443.

    Article  Google Scholar 

  • LeRoy, C. J., Hipp, A. L., Lueders, K., Follstad Shah, J. J., Kominoski, J. S., Ardón, M., Dodds, W. K., Gessner, M. O., Griffiths, N. A., Lecerf, A., Manning, D. W. P., Sinsabaugh, R. L., & Webster, J. R. (2020). Plant phylogenetic history explains in-stream decomposition at a global scale. Journal of Ecology, 108(1), 17–35. https://doi.org/10.1111/1365-2745.13262

  • LeRoy, C. J., Whitham, T. G., Keim, P., & Marks, J. C. (2006). Plant genes link forests and streams. Ecology, 87(1), 255–261. https://doi.org/10.1890/05-0159.

    Article  PubMed  Google Scholar 

  • Macfarlane, W. W., Gilbert, J. T., Jensen, M. L., Gilbert, J. D., Hough-Snee, N., McHugh, P. A., Wheaton, J. M. & Bennett, S. N. (2017). Riparian vegetation as an indicator of riparian condition: Detecting departures from historic condition across the North American West. Journal of Environmental Management, 202, 447–460.

    Google Scholar 

  • Marks, J. C. (2019). Revisiting the fates of dead leaves that fall into streams. Annual Review of Ecology Evolution and Systematics, 50, 547–568.

    Article  Google Scholar 

  • Martins, R. T., Melo, A. S., Gonçalves, J. F., Jr., & Hamada, N. (2015). Leaf-litter breakdown in urban streams of Central Amazonia: Direct and indirect effects of physical, chemical, and biological factors. Freshwater Science, 34, 716–726.

    Article  Google Scholar 

  • McClain, M. E., Boyer, E. W., Dent, C. L., Gergel, S. E., Grimm, N. B., Groffman, P. M., Hart, S. C., Harvey, J. W., Johnston, C. A., Mayorga, E. & McDowell, W. H. (2003). Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems, 6, 301–312.

    Google Scholar 

  • McKie, B. G., & Malmqvist, B. (2009). Assessing ecosystem functioning in streams affected by forest management: Increased leaf decomposition occurs without changes to the composition of benthic assemblages. Freshwater Biology, 54(10), 2086–2100. https://doi.org/10.1111/j.1365-2427.2008.02150.x.

    Article  Google Scholar 

  • Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Lovelock, C. E., Schlesinger, W. H., & Silliman, B. R. (2011). A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2 Frontiers in Ecology and Evolution, 9, 552–560.

    Google Scholar 

  • Meyer, J. L., Wallace, J. B., & Eggert, S. L. (1998). Leaf litter as a source of dissolved organic carbon in streams. Ecosystems, 1(3), 240–249. https://doi.org/10.1007/s100219900019.

    Article  CAS  Google Scholar 

  • Millenium Ecosystem Assessment. (2005). Ecosystems and human well-being: The assessment series (four volumes and summary). Washington, DC: Island Press.

    Google Scholar 

  • Minshall G. W., Peterson R. C., Cummins K. W., Bott, T. L., Sedell, J. R., Cushing, C. E., & Vannote, R. L. (1983). Interbiome comparison of stream ecosystem dynamics. Ecological Monographs, 53, 1–25.

    Google Scholar 

  • Mulholland, P. J., Helton, A. M., Poole, G. C., Hall, R. O., Hamilton, S. K., Peterson, B. J., Tank, J. L., Ashkenas, L. R., Cooper, L. W., Dahm, C. N.‚ & Dodds, W. K. (2008). Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature, 452(7184), 202–205.

    Google Scholar 

  • Naiman, R., Decamps, H., & McClain, M. (2010). Riparia: Ecology, conservation, and management of streamside communities. Elsevier.

    Google Scholar 

  • National Research Council (NRC). (2000). Clean coastal waters: Understanding and reducing the effects of nutrient pollution. Washington, DC: National Academy Press.

    Google Scholar 

  • Neubauer, S. C. (2013). Ecosystem responses of a tidal freshwater marsh experiencing saltwater intrusion and altered hydrology. Estuaries and Coasts, 36(3), 491–507.

    Google Scholar 

  • Newcomer, T. A., Kaushal, S. S., Mayer, P. M., Shields, A. R., Canuel, E. A., Groffman, P. M., & Gold, A. J. (2012). Influence of natural and novel organic carbon sources on denitrification in forest, degraded urban, and restored streams. Ecological Monographs, 82(4), 449–466. https://doi.org/10.1890/12-0458.1

  • Nicholls, R. J., Wong, P. P., Burkett, V., Codignotto, J., Hay, J., McLean, R., Ragoonaden, S., Woodroffe, C. D., Abuodha, P. A. O., Arblaster, J. & Brown, B. (2007). Coastal systems and low-lying areas. In Parry, M., Parry, M. L., Canziani, O., Palutikof, J., Van der Linden, P. & Hanson, C (Eds.), Climate change 2007-impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC (Vol. 4). Cambridge University Press.

    Google Scholar 

  • Nicholls, R. J., & Cazenave, A. (2010). Sea-level rise and its impact on coastal zones. Science, 328, 1517–1520.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson, C., Jansson, R., Kuglerová, L., Lind, L., & Ström, L. (2013). Boreal riparian vegetation under climate change. Ecosystems, 16, 401–410.

    Article  Google Scholar 

  • Noe, G., Childers, D. L., & Jones, R. D. (2001). Phosphorus biogeochemistry and the impacts of phosphorus enrichment: Why are the Everglades so unique? Ecosystems, 4, 603–624.

    Article  CAS  Google Scholar 

  • Osland, M. J., Enwright, N., Day, R. H., & Doyle, T. W. (2013). Winter climate change and coastal wetland foundation species: Salt marshes versus mangrove forests in the southeastern US. Global Change Biology, 19, 1482–1494.

    Article  PubMed  Google Scholar 

  • Osland, M. J., Enwright, N. M., Day, R. H., Gabler, C. A., Stagg, C. L., & Grace, J. B. (2016). Beyond just sea-level rise: Considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change. Global Change Biology, 22, 1–11.

    Article  PubMed  Google Scholar 

  • Paul, M. J., & Meyer, J. L. (2001). Streams in the urban landscape. Annual Review of Ecology and Systematics, 32, 333–365. https://doi.org/10.1146/annurev.ecolsys.32.081501.114040.

    Article  Google Scholar 

  • Paul, M. J., Meyer, J. L., & Couch, C. A. (2006). Leaf breakdown in streams differing in catchment land use. Freshwater Biology, 51(9), 1684–1695. https://doi.org/10.1111/j.1365-2427.2006.01612.x.

    Article  Google Scholar 

  • Perry, C. L., & Mendelssohn, I. A. (2009). Ecosystem effects of expanding populations of Avicennia germinans in a Louisiana salt marsh. Wetlands, 29(1), 396–406. https://doi.org/10.1672/08-100.1.

    Article  Google Scholar 

  • Perry, L. G., Andersen, D. C., Reynolds, L. V., Nelson, S. M., & Shafroth, P. B. (2012, March 1). Vulnerability of riparian ecosystems to elevated CO2 and climate change in arid and semiarid western North America. Global Change Biology, 18, 821–842. https://doi.org/10.1111/j.1365-2486.2011.02588.x

  • Perry, L. G., Shafroth, P. B., Blumenthal, D. M., Morgan, J. A.‚ & LeCain, D. R. (2013). Elevated CO2 does not offset greater water stress predicted under climate change for native and exotic riparian plants. New Phytologist, 197(2), 532–543.

    Google Scholar 

  • Perry, L. G., Shafroth, P. B., Hay, L. E., Markstrom, S. L., & Bock, A. R. (2020). Projected warming disrupts the synchrony of riparian seed release and snowmelt streamflow. New Phytologist, 225(2), 693–712. https://doi.org/10.1111/nph.16191.

    Article  Google Scholar 

  • Peters D. P. C., Groffman P. M., Nadelhoffer K. J., Grimm, N. B., Collins, S. L., Michener, W. K., & Huston, M. A. (2008). Living in an increasingly connected world: A framework for continental-scale environmental science. Frontiers in Ecology and the Environment, 6, 229–237.

    Google Scholar 

  • Primack, A. G. (2000). Simulation of climate-change effects on riparian vegetation in the Pere Marquette River, Michigan. Wetlands, 20, 538–547.

    Article  Google Scholar 

  • Pringle, C. M. (2001). Hydrologic connectivity and the management of biological reserves: A global perspective. Ecological Applications, 11, 981–998.

    Article  Google Scholar 

  • Prowse, T. D., Wrona, F. J., Reist, J. D., Gibson, J. J., Hobbie, J. E., Lévesque, L. M., & Vincent, W. F. (2006). Climate change effects on hydroecology of Arctic freshwater ecosystems. AMBIO: A Journal of the Human Environment, 35, 347–359.

    Google Scholar 

  • Rabalais, N. N., Turner, R. E., & Wiseman, W. J. (2002). Gulf of Mexico hypoxia, a.k.a. “The Dead Zone”. Annual Reviews in Ecology and Systematics, 33, 235–263.

    Article  Google Scholar 

  • Reynolds, L. V., & Shafroth, P. B. (2017). Riparian plant composition along hydrologic gradients in a dryland river basin and implications for a warming climate. Ecohydrology, 10(6). https://doi.org/10.1002/eco.1864

  • Riley, A. J., & Dodds, W. K. (2012). The expansion of woody riparian vegetation, and subsequent stream restoration, influences the metabolism of prairie streams. Freshwater Biology, 57(6), 1138–1150. https://doi.org/10.1111/j.1365-2427.2012.02778.x.

    Article  Google Scholar 

  • Rivaes, R., Rodríguez-González, P. M., Albuquerque, A., Pinheiro, A. N., Egger, G., & Ferreira, M. T. (2013). Riparian vegetation responses to altered flow regimes driven by climate change in Mediterranean rivers. Ecohydrology, 6(3), 413–424. https://doi.org/10.1002/eco.1287.

    Article  Google Scholar 

  • Rosemond, A. D., Benstead, J. P., Bumpers, P. M., Gulis, V., Kominoski, J. S., Manning, D. W. P., Suberkropp, K., & Wallace, J. B. (2015). Experimental nutrient additions accelerate terrestrial carbon loss from stream ecosystems. Science.Sciencemag.Org. https://doi.org/10.1126/science.aaa1934

  • Rundel, P. W., Dickie, I. A., & Richardson, D. M. (2014). Tree invasions into treeless areas: Mechanisms and ecosystem processes. Biological Invasions, 16, 663–675.

    Article  Google Scholar 

  • Running, S. W. (2012). A measurable planetary boundary for the biosphere. Science, 337, 1458–1459. https://doi.org/10.1126/science.1227620.

    Article  CAS  PubMed  Google Scholar 

  • Sabo, J. L., Sponseller, R., Dixon, M., Gade, K., Harms, T., Heffernan, J., Jani, A., Katz, G., Soykan, C., Watts, J., & Welter, J. (2005). Riparian zones increase regional species richness by harboring different, not more, species. Ecology, 86(1), 56–62. https://doi.org/10.1890/04-0668

  • Saha A. K., Saha, S., Sadle, J., Jiang, J., Ross, M. S., Price, R. M., Sternberg, L. S. L., & Wendelberger, K. S. (2011). Sea level rise and South Florida coastal forests. Climate Change, 107, 81–108.

    Google Scholar 

  • Saintilan, N., Wilson, N. C., Rogers, K., Rajkaran, A., & Krauss, K. W. (2014). Mangrove expansion and salt marsh decline at mangrove poleward limits. Global Change Biology, 20(1), 147–157. https://doi.org/10.1111/gcb.12341.

    Article  Google Scholar 

  • Sankey, J. B., Ralston, B. E., Grams, P. E., Schmidt, J. C., & Cagney, L. E. (2015). Riparian vegetation, Colorado River, and climate: Five decades of spatiotemporal dynamics in the Grand Canyon with river regulation. Journal of Geophysical Research G: Biogeosciences, 120(8), 1532–1547. https://doi.org/10.1002/2015JG002991

  • Seitzinger, S. P., Harrison, J. A., Böhlke, J. K., Bouwman, A. F., Lowrance, R., Peterson, B., Tobias, C., & Van Drecht, G. (2006). Denitrification across landscapes and waterscapes: a synthesis. Ecological Applications, 16, 2064–2090.

    Google Scholar 

  • Simpson, L., Stein, C., Osborne, T., & Hydrobiologia, I. F. (2019). Mangroves dramatically increase carbon storage after 3 years of encroachment. Springer, 834(1), 13–26. https://doi.org/10.1007/s10750-019-3905-z

  • Sheaves, M. (2009). Consequences of ecological connectivity: The coastal ecosystem mosaic. Marine Ecology Progress Series, 391, 107–115.

    Article  Google Scholar 

  • Shih J. -S., Alexander R. B., Smith R. A., et al. (2010). An initial SPARROW model of land use and in-stream controls on total organic carbon in streams of the coterminous United States. U.S. Geological Survey Open-File Report 2010–1276, 22 p.

    Google Scholar 

  • Sobczak, W. V., Cloern, J. E., Jassby, A. D., & Müller-Solger, A. B. (2002). Bioavailability of organic matter in a highly disturbed estuary: the role of detrital and algal resources. Proceedings of the National Academy of Sciences, 99, 8101–8105.

    Article  CAS  Google Scholar 

  • Stanford, J. A., & Ward, J. V. (2001). Revisiting the serial discontinuity concept. Regulated Rivers: Research & Management, 17(4–5), 303–310. https://doi.org/10.1002/rrr.659.

    Article  Google Scholar 

  • Stewart R. J., Wollheim W. M., Gooseff M. N., Briggs, M. A., Jacobs, J. M., Peterson, B. J., & Hopkinson, C. S. (2011). Separation of river network-scale nitrogen removal among the main channel and two transient storage compartments. Water Resources Research, 47. https://doi.org/10.1029/2010WR009896

  • St Louis, V., Kelly, C., Duchemin, É., Rudd, J., & Rosenberg, D. (2000). Reservoir surfaces as sources of greenhouse gases to the atmosphere: A global estimate. BioScience, 50, 766–775.

    Article  Google Scholar 

  • Tank J. L., Rosi-Marshall E. J., Griffiths N. A., Entrekin, S. A., & Stephen, M. L. (2010). A review of allochthonous organic matter dynamics and metabolism in streams. Journal of the North American Benthological Society, 29, 118–146.

    Google Scholar 

  • Taylor, P. D., Fahrig, L., Henein, K., & Merriam, G. (1993). Connectivity is a vital element of landscape structure. Oikos, 68, 571–572.

    Article  Google Scholar 

  • Taylor, P., & Townsend, A. (2010). Stoichiometric control of organic carbon–nitrate relationships from soils to the sea. Nature, 464, 1178–1181.

    Article  CAS  PubMed  Google Scholar 

  • Thorp, J. H., & Delong, M. D. (1994). The riverine productivity model: An heuristic view of carbon sources and organic processing in large river ecosystems. Oikos, 70, 305–308.

    Article  Google Scholar 

  • Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R. G., Ballatore, T. J., Dillon, P., Finlay, K., Fortino, K., Knoll, L. B., Kortelainen, P. L., Kutser, T., Larsen, S., Laurion, I., Leech, D. M., McCallister, S. L., McKnight, D. M., Melack, J. M., Erin Overholt, … Weyhenmeyer, G. A. (2009). Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography, 54(6 PART 2), 2298–2314. https://doi.org/10.4319/lo.2009.54.6_part_2.2298

  • Vandermyde, J. M., & Whiles, M. R. (2015). Effects of experimental forest removal on macroinvertebrate production and functional structure in tallgrass prairie streams. Freshwater Science, 34, 519–534.

    Article  Google Scholar 

  • Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., & Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37(1), 130–137. https://doi.org/10.1139/f80-017.

    Article  Google Scholar 

  • Veach, A. M., Dodds, W. K., & Jumpponen A. (2015). Woody plant encroachment, and its removal, impact bacterial and fungal communities across stream and terrestrial habitats in a tallgrass prairie ecosystem. FEMS Microbiology Ecology, 91, fiv109.

    Google Scholar 

  • Vörösmarty, C. J., Meybeck, M., Fekete, B., Sharmad, K., Greena, P., & Syvitskie, J. P. M. (2003). Anthropogenic sediment retention: Major global impact from registered river impoundments. Global Planet Change, 39, 169–90.

    Google Scholar 

  • Walsh, C. J., Roy, A. H., Feminella, J. W., Cottingham, P. D., Groffman, P. M. & Morgan, R. P. (2005). The urban stream syndrome: current knowledge and the search for a cure. Journal of the North American Benthological Society, 24(3), 706–723.

    Google Scholar 

  • Ward, J. V., & Stanford, J. A. (1983). Serial discontinuity concept of lotic ecosystems. Dynamics of lotic systems (pp. 29–42). Ann Arbor MI: Ann Arbor Science.

    Google Scholar 

  • Wilson, B. J., Servais, S. M., Charles, S. P., Davis, S. E., Gaiser, E. E., Kominoski, J. S., Richards, J. H., & Troxler, T. G. (2018). Declines in plant productivity drive carbon loss from brackish coastal wetland mesocosms exposed to saltwater intrusion. Estuaries and Coasts, 41, 2147–2158.

    Google Scholar 

  • Wipfli, M. S., & Musselwhite, J. (2004). Density of red alder (Alnus rubra) in headwaters influences invertebrate and detritus subsidies to downstream fish habitats in Alaska. Hydrobiologia, 520, 153–163.

    Article  Google Scholar 

  • Wollheim, W. M., Pellerin, B. A., Vörösmarty, C. J., & Hopkinson, C. S. (2005). N retention in urbanizing headwater catchments. Ecosystems, 8, 871–884.

    Article  CAS  Google Scholar 

  • Wollheim, W. M., Vörösmarty, C. J., Bouwman, A. F., Green, P., Harrison, J., Linder, E., Peterson, B. J., Seitzinger, S. P., & Syvitski, J. P. M. (2008). Global N removal by freshwater aquatic systems using a spatially distributed, within-basin approach. Global Biogeochemical Cycles, 22(2). https://doi.org/10.1029/2007gb002963

  • Woodward, G., Gessner, M. O., Giller, P. S., Gulis, V., Hladyz, S., Lecerf, A., Malmqvist, B., McKie, B. G., Tiegs, S. D., Cariss, H. & Dobson, M. (2012). Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science, 336(6087), 1438–1440.

    Google Scholar 

  • Yando, E. S., Osland, M. J., Willis, J. M., Day, R. H., Krauss, K. W., & Hester, M. W. (2016). Salt marsh-mangrove ecotones: Using structural gradients to investigate the effects of woody plant encroachment on plant–soil interactions and ecosystem carbon pools. Journal of Ecology, 104, 1020–1031.

    Article  CAS  Google Scholar 

  • Yeung, A. C. Y., Kreutzweiser, D. P., & Richardson, J. S. (2019). Stronger effects of litter origin on the processing of conifer than broadleaf leaves: A test of home-field advantage of stream litter breakdown. Freshwater Biology, 64(10), 1755–1768. https://doi.org/10.1111/fwb.13367.

    Article  Google Scholar 

  • Young, R. G., Huryn, A. D., & Townsend, C. R. (1994). Effects of agricultural development on processing of tussock leaf litter in high country New Zealand streams. Freshwater Biology, 32(2), 413–427. https://doi.org/10.1111/j.1365-2427.1994.tb01136.x.

    Article  Google Scholar 

  • Young, R. G., Matthaei, C. D., & Townsend, C. R. (2008). Organic matter breakdown and ecosystem metabolism: Functional indicators for assessing river ecosystem health. Journal of the North American Benthological Society, 27(3), 605–625. https://doi.org/10.1899/07-121.1.

    Article  Google Scholar 

  • Yule, C. M., Gan, J. Y., Jinggut, T., & Lee, K. V. (2015). Urbanization affects food webs and leaf-litter decomposition in a tropical stream in Malaysia. Freshwater Science, 34, 702–715. https://doi.org/10.1086/681252.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S. Kominoski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kominoski, J.S., Chapman, S.K., Dodds, W.K., Follstad Shah, J.J., Richardson, J.S. (2021). Causes and Consequences of Changes in Riparian Vegetation for Plant Litter Decomposition Throughout River Networks. In: Swan, C.M., Boyero, L., Canhoto, C. (eds) The Ecology of Plant Litter Decomposition in Stream Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-030-72854-0_13

Download citation

Publish with us

Policies and ethics