Skip to main content

Technical Aspects and Prescription of Peritoneal Dialysis in Children

  • Chapter
  • First Online:
Pediatric Dialysis

Abstract

Since 1978, when continuous ambulatory peritoneal dialysis (CAPD) was first introduced for the treatment of pediatric patients with end-stage renal disease (ESRD), a series of technological improvements have been incorporated into the peritoneal dialysis (PD) procedure. Important improvements have been achieved in the safety and ease of use of the mechanical devices employed in the dialysis procedure, as well as in the dialytic efficacy and biocompatibility of the PD solutions. More recently, a revolution in the fields of electronics and computer science has generated a series of automated delivery systems called “cyclers” that allow great prescription flexibility, as well as the monitoring of therapy results and of patient adherence to the dialysis prescription. Unlike CAPD, in which treatment is truly continuous for 24 h of each day, in automated peritoneal dialysis (APD), treatment is usually limited to only a portion of the 24 h, usually overnight. Both CAPD and APD are currently widely used in children around the world.

In this chapter, we describe the most recently developed and currently available equipment for the various forms of PD and provide information on how this equipment can be used to deliver the desired PD therapy for pediatric patients of all ages and sizes. Particular attention is paid to the technical developments that have proven to be most useful in fulfilling the specific clinical needs of the pediatric patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It should be noted that reliance on membrane transport assessments based on mass transfer of urea or creatinine ignores the difficulty and importance of phosphate clearance. Phosphate PD clearance is usually insufficient to obtain a satisfactory control of hyperphosphatemia, and there is a continued need for dietary restriction and phosphate binder administration. Phosphate removal by PD can be improved by increasing dwell time [89] and by optimizing exchange duration through the calculation of the so-called phosphate purification dwell time (PPT) from a PET [66].

References

  1. Oreopoulos DG, Robson MD, Izatt S. A simple and safe technique for continuous ambulatory peritoneal dialysis (CAPD). Trans Am Soc Artif Internal Organs. 1978;24:484–9.

    CAS  Google Scholar 

  2. Buoncristiani U, Bianchi P, Cozzani M, et al. A new safe, simple connection system for CAPD. Int J Urol Androl. 1980;1:50–3.

    Google Scholar 

  3. Churchill DN, Taylor DW, Vas SI, et al. Peritonitis in continuous ambulatory peritoneal dialysis (CAPD): a multicentre randomized clinical trial comparing the Y connector disinfectant system to standard systems. Perit Dial Int. 1989;9:159–63.

    Article  Google Scholar 

  4. Bazzato G, Landini S, Coli U, et al. A new technique of continuous ambulatory peritoneal dialysis (CAPD): double bag system for freedom to the patient and significant reduction of peritonitis. Clin Nephrol. 1980;13:251–4.

    CAS  PubMed  Google Scholar 

  5. Vulsma T, Menzel D, Abba FC, et al. Iodine-induced hypothyroidism in infants treated with continuous cyclic peritoneal dialysis. Lancet. 1990;336:812.

    Article  CAS  PubMed  Google Scholar 

  6. Mettang T, Pauli-Magnus C, Alscher DM, et al. Influence of plasticizer-free CAPD bags and tubings on serum, urine, and dialysate levels of phthalic acid esters in CAPD patients. Perit Dial Int. 2000;20:80–4.

    Article  CAS  PubMed  Google Scholar 

  7. Kiernan L, Kliger A, Gorban-Brennan N, et al. Comparison of continuous ambulatory peritoneal dialysis-related infections with different “Y-tubing” exchange systems. J Am Soc Nephrol. 1995;5:1835–8.

    Article  CAS  PubMed  Google Scholar 

  8. Monteon F, Corra-Rotter P, Paniagua R, Amato D. The Mexican Nephrology Collaborative Study Group, et al. Prevention of peritonitis with disconnect systems in CAPD. Kidney Int. 1998;54:2123–8.

    Article  CAS  PubMed  Google Scholar 

  9. Honda M. The 1997 report of the Japanese National Registry data on pediatric peritoneal dialysis patients. Perit Dial Int. 1999;19(Suppl 2):S473–8.

    Article  PubMed  Google Scholar 

  10. Verrina E, Cappelli V, Perfumo F. Selection of modalities, prescription, and technical issues in children on peritoneal dialysis. Pediatr Nephrol. 2009;24:1453–64.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fischbach M, Warady BA. Peritoneal dialysis prescription in children: bedside principles for optimal practice. Pediatr Nephrol. 2009;24:1633–42.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nolph KD, Twardowski ZJ. The peritoneal dialysis system. In: Nolph KD, editor. Peritoneal dialysis. Boston: Martinus Nijhof Publisher; 1985. p. 23.

    Chapter  Google Scholar 

  13. Rippe B, Rosengren BI, Venturoli D. The peritoneal microcirculation in peritoneal dialysis. Microcirculation. 2001;8(5):303–20.

    Article  CAS  PubMed  Google Scholar 

  14. Rosengren BI, Rippe B. Blood flow limitation in vivo of small solute transfer during peritoneal dialysis in rats. J Am Soc Nephrol. 2013;14(6):1599–604.

    Article  Google Scholar 

  15. Schaefer B, Bartosova M, Macher-Goeppinger S, et al. Quantitative histomorphometry of the healthy peritoneum. Sci Rep. 2016;6:21344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Twardowski ZJ. Physiology of peritoneal dialysis. In: Nissenson AR, Fine RN, Gentile DE, editors. Clinical dialysis. Norwalk: Appleton & Lange; 1990.

    Google Scholar 

  17. Gotloib L, Shostak A, Bar-Sella P, et al. Fenestrated capillaries in human parietal and rabbit diaphragmatic peritoneum. Nephron. 1985;41:200–2.

    Article  CAS  PubMed  Google Scholar 

  18. Pecoits-Filho R. The peritoneal cavity: a room with a view to the endothelium. Perit Dial Int. 2005;25:432–4.

    Article  PubMed  Google Scholar 

  19. Krediet RT, Lindholm B, Rippe B. Pathophysiology of peritoneal membrane failure. Perit Dial Int. 2000;20(Suppl 4):22–42.

    Article  Google Scholar 

  20. Flessner M, Henegar J, Bigler S, et al. Is the peritoneum a significant barrier in peritoneal dialysis? Perit Dial Int. 2003;23:542–9.

    Article  CAS  PubMed  Google Scholar 

  21. Krediet RT. The physiology of peritoneal transport and ultrafiltration. In: Gokal R, Khanna R, Krediet RT, Nolph K, editors. Textbook of peritoneal dialysis. Dordrecht: Kluwer; 2000. p. 135–73.

    Chapter  Google Scholar 

  22. Flessner MF. The transport barrier in intraperitoneal therapy. Am J Physiol Renal Physiol. 2005;288:433–42.

    Article  CAS  Google Scholar 

  23. Fischbach M, Dheu C, Seugé-Dargnies L, et al. Adequacy of peritoneal dialysis: consider the membrane for optimal prescription. Perit Dial Int. 2007;27(Suppl 2):S167–70.

    Article  PubMed  Google Scholar 

  24. Haraldsson B. Assessing the individual peritoneal dialysis capacities of individual patients. A clinical tool based on the three pore model. Kidney Int. 1995;47:1187–98.

    Article  CAS  PubMed  Google Scholar 

  25. Fischbach M, Haraldsson B. Dynamic changes of total pore area available for peritoneal exchange in children. J Am Soc Nephrol. 2001;12:1524–9.

    Article  CAS  PubMed  Google Scholar 

  26. Schmitt CP, Haraldsson B, Doetschmann R, et al. Effects of pH-neutral, bicarbonate-buffered dialysis fluid on peritoneal transport in children. Kidney Int. 2002;61:1527–36.

    Article  PubMed  Google Scholar 

  27. Haas S, Schmitt CP, Bonzel KE, et al. Improved acidosis correction and recovery of mesothelial cell mass with neutral-pH bicarbonate dialysis solution among children undergoing automated peritoneal dialysis. J Am Soc Nephrol. 2003;14:2632–8.

    Article  PubMed  Google Scholar 

  28. Fischbach M, Terzic J, Chauvé S, et al. Effect of peritoneal dialysis fluid composition on peritoneal area available for exchange in children. Nephrol Dial Transplant. 2004;19:925–32.

    Article  CAS  PubMed  Google Scholar 

  29. Morgenstern BZ. Equilibration testing: close, but not quite right. Pediatr Nephrol. 1993;7:1309–12.

    Article  Google Scholar 

  30. Warady BA, Alexander SR, Hossli S, et al. Peritoneal membrane transport function in children receiving long-term dialysis. J Am Soc Nephrol. 1996;7:2385–91.

    Article  CAS  PubMed  Google Scholar 

  31. Fischbach M, Terzic J, Laugel V, et al. Measurement of hydrostatic intraperitoneal pressure: a useful tool for the improvement of dialysis dose prescription. Pediatr Nephrol. 2003;18:976–80.

    Article  CAS  PubMed  Google Scholar 

  32. Ahmad S. Peritoneal dialysis. In: Ahmad S, editor. Manual of clinical dialysis. London: Science Press; 1999. p. 65–8.

    Google Scholar 

  33. Rippe B. Is lymphatic absorption important for ultrafiltration? Perit Dial Int. 1995;15:203–4.

    CAS  PubMed  Google Scholar 

  34. Flessner MF. Transport kinetics during peritoneal dialysis. In: Leypoldt JK, Austin RG, editors. The artificial kidney: physiological modelling and tissue engineering. Texas: Landes; 1999.

    Google Scholar 

  35. Mactier RA, Khanna R, Moore H, et al. Kinetics of peritoneal dialysis in children: role of lymphatics. Kidney Int. 1988;34:82–8.

    Article  PubMed  Google Scholar 

  36. Schaefer F, Haraldsson B, Haas S, et al. Estimation of peritoneal mass transport by three-pore model in children. Kidney Int. 1998;54:1372–9.

    Article  CAS  PubMed  Google Scholar 

  37. Schroeder CH. Optimal peritoneal dialysis: choice of volume and solution. Nephrol Dial Transplant. 2004;19:782–4.

    Article  CAS  Google Scholar 

  38. Canepa A, Verrina E, Perfumo F. Use of new peritoneal dialysis solutions in children. Kidney Int. 2008;108:S137–44.

    Article  CAS  Google Scholar 

  39. Dart A, Feber J, Wong H, et al. Icodextrin re-absorption varies with age in children on automated peritoneal dialysis. Pediatr Nephrol. 2005;20:683–5.

    Article  PubMed  Google Scholar 

  40. Rusthoven E, van der Vlugt ME, van Lingen-van Bueren LJ, et al. Evaluation of intraperitoneal pressure and the effect of different osmotic agents on intraperitoneal pressure in children. Perit Dial Int. 2005;25:352–6.

    Article  PubMed  Google Scholar 

  41. Devuyst O, Rippe B. Water transport across the peritoneal membrane. Kidney Int. 2014;85(4):750–8.

    Article  CAS  PubMed  Google Scholar 

  42. Fischbach M, Stefanidis CJ, Watson AR. Guidelines by an ad hoc European committee on adequacy of the pediatric peritoneal dialysis prescription. Nephrol Dial Transplant. 2002;17:380–5.

    Article  PubMed  Google Scholar 

  43. Goldstein SL. Adequacy of dialysis in children: does small solute clearance really matter? Pediatr Nephrol. 2004;19:1–5.

    Article  PubMed  Google Scholar 

  44. Siddique I, Brimble KS, Walkin L, et al. Genetic polymorphisms and peritoneal membrane function. Perit Dial Int. 2015;35(5):517–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. National Kidney Foundation. KDOQI clinical practice recommendations for 2006 updates: hemodialysis adequacy, peritoneal dialysis adequacy and vascular access. Am J Kidney Dis. 2006;48(Suppl1):S1–322.

    Google Scholar 

  46. Geary DF, Harvey EA, MacMillan JH, et al. The peritoneal equilibration test in children. Kidney Int. 1992;42:102–5.

    Article  CAS  PubMed  Google Scholar 

  47. Kohaut EC, Waldo FB, Benfield MR. The effect of changes in dialysate volume on glucose and urea equilibration. Perit Dial Int. 1994;14:1–4.

    Article  Google Scholar 

  48. Warady BA, Alexander SR, Hossli S, et al. The relationship between intraperitoneal volume and solute transport in pediatric patients. J Am Soc Nephrol. 1995;5:1935–9.

    Article  CAS  PubMed  Google Scholar 

  49. Verrina E, Amici G, Perfumo F, et al. The use of PD Adequest mathematical model in pediatric patients on chronic peritoneal dialysis. Perit Dial Int. 1998;18:322–8.

    CAS  PubMed  Google Scholar 

  50. Twardowski ZJ, Nolph KD, Khanna R, et al. Peritoneal equilibration test. Perit Dial Bull. 1987;7:138–47.

    Article  Google Scholar 

  51. Schaefer F, Langebeck D, Heckert KH, et al. Evaluation of peritoneal solute transfer by the peritoneal equilibration test in children. Adv Perit Dial. 1992;8:410–5.

    CAS  PubMed  Google Scholar 

  52. Waniewski J, Heimburger O, Werynski A, et al. Aqueous solute concentrations and evaluation of mass transport coefficients in peritoneal dialysis. Nephrol Dial Transplant. 1992;7(1):50–6.

    CAS  PubMed  Google Scholar 

  53. Pride ET, Gustafson J, Graham A, et al. Comparison of a 2.5% and a 4.25% dextrose peritoneal equilibration test. Perit Dial Int. 2002;22:365–70.

    Article  CAS  PubMed  Google Scholar 

  54. Smit W. Estimates of peritoneal membrane function – new insights. Nephrol Dial Transplant. 2006;21(Suppl 2):ii16–9.

    Google Scholar 

  55. Schaefer F, Klaus G, Mehls O. Mid-European Pediatric Peritoneal Dialysis Study Group. Peritoneal transport properties and dialysis dose affect growth and nutritional status in children on chronic peritoneal dialysis. J Am Soc Nephrol. 1999;10:1786–92.

    Article  CAS  PubMed  Google Scholar 

  56. Zialkowska H, Paczyk-Tomaszweska M, Debiaski A, et al. Bone metabolism and peritoneal membrane transport in children on chronic peritoneal dialysis. Perit Dial Int. 2003;23:487–92.

    Article  Google Scholar 

  57. Warady BA, Jennings J. The short PET in pediatrics. Perit Dial Int. 2007;27:441–5.

    Article  CAS  PubMed  Google Scholar 

  58. La Milia V, Di Filippo S, Crepaldi M, et al. Mini-peritoneal equilibration test: A simple and fast method to assess free water and small solute transport across the peritoneal membrane. Kidney Int. 2005;68:840–6.

    Article  PubMed  Google Scholar 

  59. Schaefer F. The PET-iatrics of peritoneal solute transport: is short also good for the young ones ? Perit Dial Int. 2007;27:413–4.

    Article  PubMed  Google Scholar 

  60. Cano F, Rojo Azocar M, et al. The mini-PET in pediatric peritoneal dialysis: a useful tool to predict volume overload? Pediatr Nephrol. 2013;28:1121–6.

    Article  PubMed  Google Scholar 

  61. Reddingius RE, Schröder CH, Willems JL, et al. Measurement of peritoneal fluid handling in children on continuous ambulatory peritoneal dialysis using dextran 70. Nephrol Dial Transplant. 1995;10:866–70.

    CAS  PubMed  Google Scholar 

  62. Bouts AHM, Davin JC, Groothoff JW, et al. Standard peritoneal permeability analysis in children. J Am Soc Nephrol. 2000;11:943–50.

    Article  CAS  PubMed  Google Scholar 

  63. Van Biesen W, Van der Tol A, Veys N, et al. The personal dialysis capacity test is superior to the peritoneal equilibration test to discriminate inflammation as the cause of fast transport status in peritoneal dialysis patients. Clin J Am Soc Nephrol. 2006;1:269–74.

    Article  PubMed  Google Scholar 

  64. Sanderson KR, Warady BA. End-stage kidney disease in infancy: an educational review. Pediatr Nephrol. 2020;35(2):229–40.

    Google Scholar 

  65. Schmitt CP, Zaloszyc A, Schaefer B, et al. Peritoneal dialysis tailored to pediatric needs. Int J Nephrol. 2011;2011:940267. Epub 2011 Jun 8.

    Article  Google Scholar 

  66. Fischbach M, Lahlou A, Eyer D, et al. Determination of individual ultrafiltration time (APEX) and purification phosphate time by peritoneal equilibration test: application to individual peritoneal dialysis modality prescription in children. Perit Dial Int. 1996;16(Suppl 1):S557–60.

    Article  PubMed  Google Scholar 

  67. Schmitt CP, Bakkaloglu SA, Klaus G, et al. Solutions for peritoneal dialysis in children: recommendations by the European Pediatric Dialysis Working Group. Pediatr Nephrol. 2011;26(7):1137–47.

    Article  PubMed  Google Scholar 

  68. Twardowski ZJ. Peritoneal dialysis glossary III. Adv Perit Dial. 1992;8:47–9.

    Google Scholar 

  69. Rees L, Schaefer F, Schmitt CP, Shroff R, Warady BA. Chronic dialysis in children and adolescents: challenges and outcomes. Lancet Child Adolesc Health. 2017;1:68–77.

    Article  PubMed  Google Scholar 

  70. Verrina E, Edefonti A, Gianoglio B, et al. A multicenter experience on patient and technique survival in children on chronic dialysis. Pediatr Nephrol. 2004;19:82–90.

    Article  PubMed  Google Scholar 

  71. Mujais S, Childers RW. Profiles of automated peritoneal dialysis prescription in the US 1997–2003. Kidney Int. 2006;103:S84–90.

    Article  Google Scholar 

  72. Velasco RF, Munoz JL, Saavedra VS, et al. Automated peritoneal dialysis as the modality of choice: a single-centre, 3-year experience with 458 children in Mexico. Pediatr Nephrol. 2008;23:465–71.

    Article  Google Scholar 

  73. North American Pediatric Renal Trials and Collaborative Studies (NAPRTCS) 2011. NAPRTCS Annual Report. http://www.emmes.com/study/ped/annlrept/annlrept.html .

  74. Chiu M-C, Fai-Ngor Ng C, Lee L-P, et al. Automated peritoneal dialysis in children and adolescents-benefits; a survey of patients and parents on health-related quality of life. Perit Dial Int. 2007;27:S138–42.

    Article  PubMed  Google Scholar 

  75. Fischbach M, Terzic J, Gaugler C, et al. Impact of an increased intraperitoneal fill volume both on tolerance and dialysis effectiveness in children. Adv Perit Dial. 1998;14:258–64.

    CAS  PubMed  Google Scholar 

  76. Fischbach M, Terzic J, Menouer S, et al. Impact of fill volume changes on peritoneal dialysis and tolerance in children. Adv Perit Dial. 2000;16:320–3.

    Google Scholar 

  77. Keshaviah P, Emerson PF, Vonesh EF, et al. Relationship between body size, fill volume and mass transfer area coefficient in peritoneal dialysis. J Am Soc Nephrol. 1994;4:1820–6.

    Article  CAS  PubMed  Google Scholar 

  78. Vidal E, van Stralen K, Chesnaye NC, et al. Infants requiring maintenance dialysis: outcomes of hemodialysis and peritoneal dialysis. Am J Kidney Dis. 2017;69:617–25.

    Article  PubMed  Google Scholar 

  79. Sanderson KR, Yu Y, Dai H, et al. Outcomes of infants receiving chronic peritoneal dialysis: an analysis of the USRDS Registry. Pediatr Nephrol. 2019;34:155–62.

    Article  PubMed  Google Scholar 

  80. Vonesh EF. Membrane transport models and computerized kinetic modeling applied to automated peritoneal dialysis. In: Ronco C, Amici G, Feriani M, Virga G, editors. Automated peritoneal dialysis. Basel: Karger; 1999. p. 15–34.

    Chapter  Google Scholar 

  81. Warady BA, Watkins SL, Fivush BA, et al. Validation of PD Adequest 2.0 for pediatric dialysis patients. Pediatr Nephrol. 2001;16:205–11.

    Article  CAS  PubMed  Google Scholar 

  82. Ho-dac-Pannekeet MM, Atasever B, Strujik DG, et al. Analysis of ultrafiltration failure in peritoneal dialysis patients by means of standard peritoneal permeability analysis. Perit Dial Int. 1997;17:144–50.

    Article  CAS  PubMed  Google Scholar 

  83. Mujais S, Nolph K, Blake P, et al. Evaluation and management of ultrafiltration problems in peritoneal dialysis. Perit Dial Int. 2000;20(Suppl 4):S5–21.

    Article  PubMed  Google Scholar 

  84. Holmes CJ, Shockley TR. Strategies to reduce glucose exposure in peritoneal dialysis patients. Perit Dial Int. 2000;20:S37–41.

    Article  PubMed  Google Scholar 

  85. Warady BA, Ellis EN, Fivush BA, et al. Flush before fill in children receiving automated peritoneal dialysis. Perit Dial Int. 2003;23:493–8.

    Article  PubMed  Google Scholar 

  86. Abu-Alfa AK, Burkart J, Piraino B, et al. Approach to fluid management in peritoneal dialysis. A practical algorithm. Kidney Int. 2002;62(Suppl 81):S8–16.

    Article  Google Scholar 

  87. Jansen MAM, Termorshuizen F, Korevaar JC, et al. Predictors of survival in anuric peritoneal dialysis patients. Kidney Int. 2005;68:1199–205.

    Article  PubMed  Google Scholar 

  88. Freida P, Issad B. Continuous cyclic peritoneal dialysis prescription and power. In: Ronco C, Amici G, Feriani M, Virga G, editors. Automated peritoneal dialysis. Basel: Karger; 1999. p. 98–108.

    Chapter  Google Scholar 

  89. Fischbach M, Terzic J, Menouer S, et al. Optimal volume prescription for children on peritoneal dialysis. Perit Dial Int. 2000;20:603–6.

    Article  CAS  PubMed  Google Scholar 

  90. Diaz-Buzo JA. Continuous cycling peritoneal dialysis, PD Plus, and high-flow automated peritoneal dialysis: a spectrum of therapies. Perit Dial Int. 2000;20(Suppl 2):S93–7.

    Article  Google Scholar 

  91. Amici G. Solute kinetics in automated peritoneal dialysis. Perit Dial Int. 2000;20(Suppl. 2):S77–82.

    Article  PubMed  Google Scholar 

  92. Posthuma N, ter Wee PM, Donker AJM, et al. Assessment of the effectiveness, safety, and biocompatibility of icodextrin in automated peritoneal dialysis. Perit Dial Int. 2000;20(Suppl 2):S106–13.

    PubMed  Google Scholar 

  93. Rusthoven E, Krediet RT, Willems HL, et al. Peritoneal transport characteristics with glucose polymer-based dialysis fluid in children. J Am Soc Nephrol. 2004;15:2940–7.

    Article  CAS  PubMed  Google Scholar 

  94. Mujais S, Vonesh E. Profiling of peritoneal ultrafiltration. Kidney Int. 2002;62(Suppl 81):S17–22.

    Article  Google Scholar 

  95. Edefonti A, Consalvo G, Picca M, et al. Dialysis delivery in children in nightly intermittent and tidal peritoneal dialysis. Pediatr Nephrol. 1995;9:329–32.

    Article  CAS  PubMed  Google Scholar 

  96. Hölttä T, Rönnholm K, Holmberg C. Adequacy of dialysis with tidal and continuous cycling peritoneal dialysis in children. Nephrol Dial Transplant. 2000;15:1438–42.

    Article  PubMed  Google Scholar 

  97. Amici G. Continuous tidal peritoneal dialysis. Prescription and power. In: Ronco C, Amici G, Feriani M, Virga G, editors. Automated peritoneal dialysis. Basel: Karger; 1999. p. 134–41.

    Chapter  Google Scholar 

  98. Brandes JC, Packard WJ, Watters SK, et al. Optimization of dialysate flow and mass transfer during automated peritoneal dialysis. Am J Kidney Dis. 1998;25:603–10.

    Article  Google Scholar 

  99. Fischbach M, Issad B, Dubois V, et al. The beneficial influence on the effectiveness of automated peritoneal dialysis of varying the dwell time (short/long) and fill volume (small/large): a randomized controlled trial. Perit Dial Int. 2011;31:450–8.

    Article  PubMed  Google Scholar 

  100. Fischbach M, Schmitt CP, Shroff R, et al. Increasing sodium removal on peritoneal dialysis: applying dialysis mechanics to the peritoneal dialysis prescription. Kidney Int. 2016;89(4):761–6. Epub 2016 Jan 21.

    Article  CAS  PubMed  Google Scholar 

  101. Fischbach M, Zaloszyc A, Schaefer B, et al. Optimizing peritoneal dialysis prescription for volume control: the importance of varying dwell time and dwell volume. Pediatr Nephrol. 2014;29(8):1321–7.

    Article  PubMed  Google Scholar 

  102. Alflaiw A, Vas S, Oreopoulos D. Peritonitis in patients on automated peritoneal dialysis. In: Ronco C, Amici G, Feriani M, Virga G, editors. Automated peritoneal dialysis. Basel: Karger; 1999. p. 213–28.

    Chapter  Google Scholar 

  103. Maiorca R, Brunori G, Zubani R, et al. Predictive value of dialysis adequacy and nutritional indices for mortality and morbidity in CAPD and HD patients. A longitudinal study. Nephrol Dial Transplant. 1995;10:2295–305.

    Article  CAS  PubMed  Google Scholar 

  104. Churchill DN, Taylor DW, Keshaviah PK. Canada-USA Peritoneal Dialysis Study Group, et al. Adequacy of dialysis and nutrition in continuous peritoneal dialysis: Association with clinical outcomes. J Am Soc Nephrol. 1996;7:198–207.

    Article  Google Scholar 

  105. National Kidney Foundation. K/DOQI clinical practice guidelines for peritoneal dialysis adequacy. Am J Kidney Dis. 2000;37(Suppl 1):S65–136.

    Google Scholar 

  106. Bargman JM, Thorpe KE, Churchill DN. Relative contribution of residual renal function and peritoneal clearance to adequacy of dialysis: a reanalysis of the CANUSA study. J Am Soc Nephrol. 2001;12:2158–62.

    Article  CAS  PubMed  Google Scholar 

  107. Paniagua R, Amato D, Vonesh E, et al. Effects of increased peritoneal clearances on mortality rates in peritoneal dialysis: ADEMEX, a prospective randomised controlled trial. J Am Soc Nephrol. 2002;13:1307–20.

    Article  CAS  PubMed  Google Scholar 

  108. Lo W-K, Ho Y-W, Li C-C, et al. Effect of Kt/V on survival and clinical outcome in CAPD patients in a prospective randomised trial. Kidney Int. 2003;64:649–56.

    Article  PubMed  Google Scholar 

  109. Churchill DN. Impact of peritoneal dialysis dose guidelines on clinical outcome. Perit Dial Int. 2005;25(Suppl 3):S95–8.

    Article  PubMed  Google Scholar 

  110. Wong CS, Hingorani S, Gillen DL, et al. Hypoalbuminemia and risk of death in pediatric patients with end-stage renal disease. Kidney Int. 2002;61:630–7.

    Article  PubMed  Google Scholar 

  111. Malhotra C, Murata GH, Tzamaloukas AH. Creatinine clearance and urea clearance in PD. What to do in case of discrepancy. Perit Dial Int. 1997;17:532–5.

    Article  CAS  PubMed  Google Scholar 

  112. Twardowski ZJ. Relationship between creatinine clearance and Kt/V in peritoneal dialysis: a response to the defense of the DOQI document. Perit Dial Int. 1999;19:199–203.

    Article  CAS  PubMed  Google Scholar 

  113. Lo W-K, Bargman JM, Burkart J, et al. Guideline on targets for solute and fluid removal in adult patients on chronic peritoneal dialysis. Perit Dial Int. 2006;26:520–2.

    Article  PubMed  Google Scholar 

  114. Mellits ED, Cheek DB. The assessment of body water and fatness from infancy to adulthood. Monogr Soc Res Child Dev. 1970;35:12–26.

    Article  CAS  PubMed  Google Scholar 

  115. Morgenstern BZ, Wühl E, Sreekumaran Nair K, et al. Anthropometric prediction of total body water in children who are on pediatric peritoneal dialysis. J Am Soc Nephrol. 2006;17:285–93.

    Article  PubMed  Google Scholar 

  116. Oh J, Wunsch R, Turzer M, et al. Advanced coronary and carotid arteriopathy in young adults with childhood-onset chronic renal failure. Circulation. 2002;106:100–5.

    Article  PubMed  Google Scholar 

  117. Litwin M, Wuhl E, Jourdan C, et al. Altered morphologic properties of large arteries in children with chronic renal failure and after renal transplantation. J Am Soc Nephrol. 2005;16:1494–500.

    Article  PubMed  Google Scholar 

  118. Schmitt CP, Borzych D, Nau B, et al. Dialytic phosphate removal: a modifiable measure of dialysis efficacy in automated peritoneal dialysis. Perit Dial Int. 2009;29:465–71.

    Article  CAS  PubMed  Google Scholar 

  119. Kim DJ, Do JH, Huh WS, et al. Dissociation between clearances of small and middle molecules in incremental peritoneal dialysis. Perit Dial Int. 2001;21:462–6.

    Article  CAS  PubMed  Google Scholar 

  120. Paniagua R, Ventura MJ, Rodriguez E, et al. Impact of fill volume on peritoneal clearances and cytokine appearance in peritoneal dialysis. Perit Dial Int. 2004;24:156–62.

    Article  CAS  PubMed  Google Scholar 

  121. Waniewski J. Transit time, residence time, and the rate of approach to steady state for solute transport during peritoneal dialysis. Ann Biomed Eng. 2008;36:1735–43.

    Article  PubMed  Google Scholar 

  122. Montini G, Amici G, Milan S, et al. Middle molecule and small protein removal in children on peritoneal dialysis. Kidney Int. 2002;61:1153–9.

    Article  CAS  PubMed  Google Scholar 

  123. Bammens B, Evenpoel P, Verbecke K, et al. Removal of middle molecules and protein-bound solutes by peritoneal dialysis and relation with uremic symptoms. Kidney Int. 2003;64:2238–43.

    Article  CAS  PubMed  Google Scholar 

  124. Opatrnà S, Opatrny K, Racek J, et al. Effect of icodextrin-based dialysis solution on peritoneal leptin clearance. Perit Dial Int. 2003;23:89–91.

    Article  PubMed  Google Scholar 

  125. Paniagua R, Ventura MD, Avial-Diaz M, et al. NTproBNP, fluid volume overload and dialysis modality are independent predictors of mortality in ESRD patients. Nephrol Dial Int. 2010;25:551–7.

    Article  CAS  Google Scholar 

  126. Mitsnefes M, Stablein D. Hypertension in pediatric patients on long-term dialysis: A report of the North American Pediatric Renal Transplant Cooperative Study (NAPRTCS). Am J Kidney Dis. 2005;45:309–15.

    Article  PubMed  Google Scholar 

  127. Kramer AM, van Stralen K, Jager KJ, et al. Demographics of blood pressure and hypertension in children on renal replacement therapy in Europe. Kidney Int. 2011;80:1092–8.

    Article  PubMed  Google Scholar 

  128. Bakkaloglu SA, Borzych D, Soo HAI, et al. Cardiac geometry in children receiving chronic peritoneal dialysis: findings from the International Pediatric Dialysis Network (IPPN) Registry. Clin J Am Soc Nephrol. 2011;6(8):1926–33.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Hollta T, Happonen JM, Ronholm K, et al. Hypertension, cardiac state, and the role of volume overload during peritoneal dialysis. Pediatr Nephrol. 2001;16:324–31.

    Article  Google Scholar 

  130. Paglialonga F, Consolo S, Edefonti A, et al. Blood pressure management in children on dialysis. Pediatr Nephrol. 2018;33(2):239–250. Epub 2017 Jun 9.

    Article  CAS  PubMed  Google Scholar 

  131. La Milia V, Di Filippo S, Crepaldi M, et al. Mini-PET: a simple and fast method to assess free water and small solute transport across the peritoneal membrane. Kidney Int. 2005;68:840–7.

    Article  PubMed  Google Scholar 

  132. Smit W, Struijk DG, Ho-dac MM, et al. Quantification of free water transport in peritoneal dialysis. Kidney Int. 2004;66:849–54.

    Article  PubMed  Google Scholar 

  133. Heimburger O, Waniewski J, Werynski A, et al. Peritoneal transport in CAPD patients with permanent loss of ultrafiltration capacity. Kidney Int. 1990;38:492–506.

    Article  Google Scholar 

  134. Termorshuizen F, Korevaar JC, Dekker FW, et al. The relative importance of residual renal function compared with peritoneal clearance for patient survival and quality of life: an analysis of the Netherlands Cooperative Study on the Adequacy of Dialysis (NECOSAD) – 2. Am J Kidney Dis. 2003;41:1293–302.

    Google Scholar 

  135. Rumpsfeld M, McDonald SP, Johnson DV. Peritoneal small solute clearance is nonlinearly correlated to patient survival in the Australian and New Zealand peritoneal dialysis patient population. Perit Dial Int. 2009;29:637–46.

    Article  PubMed  Google Scholar 

  136. Chada V, Blowey DL, Warady BA. Is growth a valid outcome measure of dialysis clearance in children undergoing peritoneal dialysis? Perit Dial Int. 2001;21(Suppl 3):S179–84.

    Article  Google Scholar 

  137. Tkaczyk M, Nowicki M, Balasz-Chmielewska I, et al. Hypertension in dialysed children: the prevalence and therapeutic approach in Poland. Nephrol Dial Transplant. 2006;21:736–42.

    Article  PubMed  Google Scholar 

  138. Bakkaloglu SA, Saygili A, Sever L, et al. Assessment of cardiovascular risk in paediatric peritoneal dialysis patients: a Turkish Pediatric Peritoneal Dialysis Study Group (TUPED) report. Nephrol Dial Transplant. 2009;24:3525–32.

    Article  PubMed  Google Scholar 

  139. Feber J, Scharer K, Schaefer F, et al. Residual renal function in children on hemodialysis and peritoneal dialysis therapy. Pediatr Nephrol. 1994;8:579–83.

    Article  CAS  PubMed  Google Scholar 

  140. Fischbach M, Terzic J, Menouer S, et al. Effects of automated peritoneal dialysis on residual daily urinary volume in children. Adv Perit Dial. 2001;17:269–73.

    CAS  PubMed  Google Scholar 

  141. Mehrotra R. Long-term outcomes in automated peritoneal dialysis: similar or better than in continuous ambulatory peritoneal dialysis. Perit Dial Int. 2009;29(Suppl 2):S111–4.

    Article  PubMed  Google Scholar 

  142. Dell’Aquila R, Berlingò G, Pellanda MV, et al. Continuous ambulatory peritoneal dialysis and automated peritoneal dialysis: are there differences in outcome? Contrib Nephrol. 2009;25:110–4.

    Google Scholar 

  143. Roszowska-Blaim M, Skrzypczyk P, Drozdz D, et al. Residual renal function in children treated with continuous ambulatory peritoneal dialysis or automated peritoneal dialysis – a preliminary study. Adv Perit Dial. 2009;25:103–9.

    Google Scholar 

  144. van Olden RW, Guchelaar HJ, Struijk DG, et al. Acute effects of high-dose furosemide on residual renal function in CAPD patients. Perit Dial Int. 2003;23(4):339–47.

    Article  PubMed  Google Scholar 

  145. Li PK, Chow KM, Wong TY, et al. Effects of an angiotensin-converting enzyme inhibitor on residual renal function in patients receiving peritoneal dialysis. A randomized, controlled study. Ann Intern Med. 2003;139:105–12.

    Article  CAS  PubMed  Google Scholar 

  146. Suzuki H, Kanno Y, Sugahara S, et al. Effects of an angiotensin II receptor blocker, valsartan, on residual renal function in patients on CAPD. Am J Kidney Dis. 2004;43:1056–64.

    Article  CAS  PubMed  Google Scholar 

  147. Akbari A, Knoll G, Ferguson D, et al. Angiotensin converting enzyme inhibitors and angiotensin receptor blockers in peritoneal dialysis: systematic review and meta-analysis of randomized controlled trials. Perit Dial Int. 2009;29:554–61.

    Article  CAS  PubMed  Google Scholar 

  148. Phakdeekitcharoen B, Leelasa-nguan P. Effects of an ACE inhibitor or angiotensin receptor blocker on potassium in CAPD patients. Am J Kidney Dis. 2004;44:738–46.

    Article  CAS  PubMed  Google Scholar 

  149. Litwin M, Grenda R, Sladowska J, et al. Add-on therapy with angiotensin II receptor I blocker in children with chronic kidney disease already treated with angiotensin-converting enzyme inhibitors. Pediatr Nephrol. 2006;21(11):1716–22.

    Article  PubMed  Google Scholar 

  150. Höltta T, Ronholm K, Jalanko H, et al. Clinical outcome of pediatric patients on peritoneal dialysis under adequacy control. Pediatr Nephrol. 2000;14:889–97.

    Article  PubMed  Google Scholar 

  151. Rees L, Azocar M, Borzych D, et al. Growth in very young children undergoing chronic peritoneal dialysis. J Am Soc Nephrol. 2011;22(12):2303–12.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Paglialonga F, Edefonti A. Nutrition assessment and management in children on peritoneal dialysis. Pediatr Nephrol. 2009;24:721–30.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Rees L, Shaw V. Nutrition in children with CRF and on dialysis. Pediatr Nephrol. 2007;22:1689–702.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Schaefer F, Wolf S, Klaus G, et al. Higher Kt/V urea associated with greater protein catabolic rate and dietary protein intake in children treated with CCPD compared to CAPD. Adv Perit Dial. 1994;10:310–4.

    CAS  PubMed  Google Scholar 

  155. Aranda RA, Pecoits-Filho RFS, Romao JE Jr, et al. Kt/V in children on CAPD: how much is enough? Perit Dial Int. 1999;19:588–9.

    Article  CAS  PubMed  Google Scholar 

  156. Fischbach M, Terzic J, Lahlou A, et al. Nutritional effects of Kt/V in children on peritoneal dialysis: are there benefits from larger dialysis doses? Adv Perit Dial. 1995;11:306–8.

    CAS  PubMed  Google Scholar 

  157. Cano F, Azocar M, Cavada G, et al. Kt/V and nPNA in pediatric peritoneal dialysis: a clinical or a mathematical association ? Pediatr Nephrol. 2006;21:114–8.

    Article  CAS  PubMed  Google Scholar 

  158. Brem AS, Lambert C, Hill C, et al. Outcome data on pediatric dialysis from the end-stage renal disease clinical indicators project. Am J Kidney Dis. 2000;36:310–7.

    Article  CAS  PubMed  Google Scholar 

  159. Bakkaloglu SA, Ekim M, Kocak G, et al. Impact of dialysis adequacy on cardiac function in pediatric CAPD patients. Perit Dial Int. 2001;21:395–400.

    Article  CAS  PubMed  Google Scholar 

  160. Warady B, Schaefer F, Alexander SR, Firanek C, Mujais S. Care of the pediatric patient on peritoneal dialysis. Clinical process for optimal outcomes. McGaw Park: Baxter Healthcare Corporation; 2004. p. 84–5.

    Google Scholar 

  161. Gehan EA, George SL. Estimation of human body surface area from height and weight. Cancer Chemoter Rep. 1970;54:225–35.

    CAS  Google Scholar 

  162. Schaefer F, Wühl E, Feneberg R, Mehls O, Scharer K. Assessment of body composition in children with chronic renal failure. Pediatr Nephrol. 2000;14:673–8.

    Article  CAS  PubMed  Google Scholar 

  163. Ronco C, Brendolan A, Zanella M. Evolution of machines for automated peritoneal dialysis. In: Ronco C, Amici G, Feriani M, Virga G, editors. Automated peritoneal dialysis. Basel: Karger; 1999. p. 142–61.

    Chapter  Google Scholar 

  164. Ronco C, Amerling R, Dell’Aquila R, et al. Evolution of technology for automated peritoneal dialysis. Contrib Nephrol. 2006;150:291–309.

    Article  CAS  PubMed  Google Scholar 

  165. Edefonti A, Boccola S, Picca M, et al. Treatment data during pediatric home peritoneal dialysis. Pediatr Nephrol. 2003;18:560–4.

    Article  PubMed  Google Scholar 

  166. Milan Manani S, Rosner MH, Virzì GM, et al. Experience with remote monitoring for automated peritoneal dialysis patients. Nephron. 2019 Jan;30:1–9. [Epub ahead of print].

    Article  Google Scholar 

  167. Uchiyama K, Washida N, Yube N, et al. The impact of a remote monitoring system of healthcare resource consumption in patients on automated peritoneal dialysis (APD): A simulation study. Clin Nephrol. 2018;90(5):334–40.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Gallar P, Vigil A, Rodriguez I, et al. Two-year experience with telemedicine in the follow-up of patients in home peritoneal dialysis. J Telemed Telecare. 2007;13:288–92.

    Article  PubMed  Google Scholar 

  169. Nakamoto H. Telemedicine system for patients on continuous ambulatory peritoneal dialysis. Perit Dial Int. 2007;27(Suppl 2):S21–6.

    Article  PubMed  Google Scholar 

  170. Cargill A, Watson AR. Telecare support for patients undergoing chronic peritoneal dialysis. Perit Dial Int. 2003;23:91–4.

    Article  PubMed  Google Scholar 

  171. Chua AN, Warady BA. Adherence of pediatric patients to automated peritoneal dialysis. Pediatr Nephrol. 2011;26(5):789–93.

    Article  PubMed  Google Scholar 

  172. Nolph KD, Twardowski ZJ, Khanna R, Prowant BF, et al. Predicted and measured daily creatinine production in CAPD: identifying non-compliance. Perit Dial Int. 1995;15:22–5.

    Article  CAS  PubMed  Google Scholar 

  173. Ellis EN, Blaszak C, Wright S, et al. Effectiveness of home visits to pediatric peritoneal dialysis patients. Perit Dial Int. 2012;32(4):419–23.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Bernardini J, Nagy M, Piraino B. Pattern of non compliance with dialysis exchanges in peritoneal dialysis patients. Am J Kidney Dis. 2000;35:1104–10.

    Article  CAS  PubMed  Google Scholar 

  175. Blake PG, Korbert SM, Blake R, et al. A multicenter study of non compliance with continuous ambulatory peritoneal dialysis exchanges in US and Canadian patients. Am J Kidney Dis. 2000;35:506–14.

    Article  CAS  PubMed  Google Scholar 

  176. Amici G, Viglino G, Gandolfo C, et al. Compliance study in peritoneal dialysis using PD Adequest software. Perit Dial Int. 1996;16(Suppl 1):S176–8.

    Article  PubMed  Google Scholar 

  177. Watson AR, Hayes WN, Vondrak K, et al. European Paediatric Dialysis Working Group. Factors influencing choice of renal replacement therapy in European paediatric nephrology units. Pediatr Nephrol. 2013;28(12):2361–8. Epub 2013 Jul 11.

    Article  PubMed  Google Scholar 

  178. Watson AR, Gartland C. Guidelines by an ad hoc European committee for elective chronic peritoneal dialysis in pediatric patients. Perit Dial Int. 2001;21:240–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Eugenio Verrina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verrina, E.E., Harshman, L.A. (2021). Technical Aspects and Prescription of Peritoneal Dialysis in Children. In: Warady, B.A., Alexander, S.R., Schaefer, F. (eds) Pediatric Dialysis. Springer, Cham. https://doi.org/10.1007/978-3-030-66861-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66861-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66860-0

  • Online ISBN: 978-3-030-66861-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics