Skip to main content

Communicative Reinforcement Learning Agents for Landmark Detection in Brain Images

  • Conference paper
  • First Online:
Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology (MLCN 2020, RNO-AI 2020)

Abstract

Accurate detection of anatomical landmarks is an essential step in several medical imaging tasks. We propose a novel communicative multi-agent reinforcement learning (C-MARL) system to automatically detect landmarks in 3D medical scans. C-MARL enables the agents to learn explicit communication channels, as well as implicit communication signals by sharing certain weights of the architecture among all the agents. The proposed approach is evaluated on two brain imaging datasets from adult magnetic resonance imaging (MRI) and fetal ultrasound scans. Our experiments show that involving multiple cooperating agents by learning their communication with each other outperforms previous approaches using single agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://adni.loni.usc.edu.

  2. 2.

    http://www.ifindproject.com.

References

  1. Alansary, A., et al.: Automatic view planning with multi-scale deep reinforcement learning agents. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 277–285. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_32

    Chapter  Google Scholar 

  2. Alansary, A., et al.: Evaluating reinforcement learning agents for anatomical landmark detection. Med. Image Anal. 53, 156–164 (2019)

    Article  Google Scholar 

  3. Basher, A., et al.: Hippocampus localization using a two-stage ensemble Hough convolutional neural network. IEEE Access 7, 73436–73447 (2019)

    Article  Google Scholar 

  4. Bellman, R.: Dynamic programming. Science 153(3731), 34–37 (1966)

    Article  Google Scholar 

  5. Gauriau, R., Cuingnet, R., Lesage, D., Bloch, I.: Multi-organ localization with cascaded global-to-local regression and shape prior. Med. Image Anal. 23(1), 70–83 (2015)

    Article  Google Scholar 

  6. Ghesu, F.C., Georgescu, B., Mansi, T., Neumann, D., Hornegger, J., Comaniciu, D.: An artificial agent for anatomical landmark detection in medical images. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 229–237. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_27

    Chapter  Google Scholar 

  7. Ghesu, F.C., et al.: Multi-scale deep reinforcement learning for real-time 3D-landmark detection in CT scans. IEEE Trans. Pattern Anal. Mach. Intell. 41(1), 176–189 (2017)

    Article  Google Scholar 

  8. Li, Y., et al.: Fast multiple landmark localisation using a patch-based iterative network. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 563–571. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_64

    Chapter  Google Scholar 

  9. Lian, C., Liu, M., Zhang, J., Shen, D.: Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI. IEEE Trans. Pattern Anal. Mach. Intell. 42, 880–893 (2018)

    Article  Google Scholar 

  10. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  11. Navarro, F., Sekuboyina, A., Waldmannstetter, D., Peeken, J.C., Combs, S.E., Menze, B.H.: Deep reinforcement learning for organ localization in CT. arXiv preprint arXiv:2005.04974 (2020)

  12. Oktay, O., et al.: Stratified decision forests for accurate anatomical landmark localization in cardiac images. IEEE Trans. Med. Imaging 36(1), 332–342 (2016)

    Article  Google Scholar 

  13. Payer, C., Štern, D., Bischof, H., Urschler, M.: Regressing heatmaps for multiple landmark localization using CNNs. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 230–238. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_27

    Chapter  Google Scholar 

  14. Sukhbaatar, S., Fergus, R., et al.: Learning multiagent communication with backpropagation. In: Advances in Neural Information Processing Systems, pp. 2244–2252 (2016)

    Google Scholar 

  15. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2018)

    MATH  Google Scholar 

  16. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double q-learning. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  17. Vlontzos, A., Alansary, A., Kamnitsas, K., Rueckert, D., Kainz, B.: Multiple landmark detection using multi-agent reinforcement learning. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 262–270. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_29

    Chapter  Google Scholar 

  18. Waldmannstetter, D., et al.: Reinforced redetection of landmark in pre- and post-operative brain scan using anatomical guidance for image alignment. In: Špiclin, Ž., McClelland, J., Kybic, J., Goksel, O. (eds.) WBIR 2020. LNCS, vol. 12120, pp. 81–90. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50120-4_8

    Chapter  Google Scholar 

  19. Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., Freitas, N.: Dueling network architectures for deep reinforcement learning. In: International Conference on Machine Learning, pp. 1995–2003 (2016)

    Google Scholar 

  20. Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992)

    MATH  Google Scholar 

  21. Yu, C., Liu, J., Nemati, S.: Reinforcement learning in healthcare: a survey. arXiv preprint arXiv:1908.08796 (2019)

  22. Zhong, Z., Li, J., Zhang, Z., Jiao, Z., Gao, X.: An attention-guided deep regression model for landmark detection in cephalograms. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 540–548. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_60

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Alansary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leroy, G., Rueckert, D., Alansary, A. (2020). Communicative Reinforcement Learning Agents for Landmark Detection in Brain Images. In: Kia, S.M., et al. Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology. MLCN RNO-AI 2020 2020. Lecture Notes in Computer Science(), vol 12449. Springer, Cham. https://doi.org/10.1007/978-3-030-66843-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66843-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66842-6

  • Online ISBN: 978-3-030-66843-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics