Skip to main content

W2S: Microscopy Data with Joint Denoising and Super-Resolution for Widefield to SIM Mapping

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 Workshops (ECCV 2020)

Abstract

In fluorescence microscopy live-cell imaging, there is a critical trade-off between the signal-to-noise ratio and spatial resolution on one side, and the integrity of the biological sample on the other side. To obtain clean high-resolution (HR) images, one can either use microscopy techniques, such as structured-illumination microscopy (SIM), or apply denoising and super-resolution (SR) algorithms. However, the former option requires multiple shots that can damage the samples, and although efficient deep learning based algorithms exist for the latter option, no benchmark exists to evaluate these algorithms on the joint denoising and SR (JDSR) tasks.

To study JDSR on microscopy data, we propose such a novel JDSR dataset, Widefield2SIM (W2S), acquired using a conventional fluorescence widefield and SIM imaging. W2S includes 144,000 real fluorescence microscopy images, resulting in a total of 360 sets of images. A set is comprised of noisy low-resolution (LR) widefield images with different noise levels, a noise-free LR image, and a corresponding high-quality HR SIM image. W2S allows us to benchmark the combinations of 6 denoising methods and 6 SR methods. We show that state-of-the-art SR networks perform very poorly on noisy inputs. Our evaluation also reveals that applying the best denoiser in terms of reconstruction error followed by the best SR method does not necessarily yield the best final result. Both quantitative and qualitative results show that SR networks are sensitive to noise and the sequential application of denoising and SR algorithms is sub-optimal. Lastly, we demonstrate that SR networks retrained end-to-end for JDSR outperform any combination of state-of-the-art deep denoising and SR networks (Code and data available at https://github.com/IVRL/w2s).

R. Zhou and M. El Helou—The first two authors have similar contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdelhamed, A., Lin, S., Brown, M.S.: A high-quality denoising dataset for smartphone cameras. In: CVPR (2018)

    Google Scholar 

  2. Anwar, S., Barnes, N.: Real image denoising with feature attention. In: ICCV (2019)

    Google Scholar 

  3. Batson, J., Royer, L.: Noise2Self: Blind denoising by self-supervision. In: ICML (2019)

    Google Scholar 

  4. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding (2012)

    Google Scholar 

  5. Cai, J., Zeng, H., Yong, H., Cao, Z., Zhang, L.: Toward real-world single image super-resolution: a new benchmark and a new model. In: CVPR (2019)

    Google Scholar 

  6. Chen, C., Xiong, Z., Tian, X., Zha, Z.J., Wu, F.: Camera lens super-resolution. In: CVPR (2019)

    Google Scholar 

  7. Choi, J.H., Zhang, H., Kim, J.H., Hsieh, C.J., Lee, J.S.: Evaluating robustness of deep image super-resolution against adversarial attacks. In: ICCV (2019)

    Google Scholar 

  8. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16, 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  9. Dai, T., Cai, J., Zhang, Y., Xia, S.T., Zhang, L.: Second-order attention network for single image super-resolution. In: CVPR (2019)

    Google Scholar 

  10. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  11. El Helou, M., Dümbgen, F., Achanta, R., Süsstrunk, S.: Fourier-domain optimization for image processing. arXiv preprint arXiv:1809.04187 (2018)

  12. El Helou, M., Süsstrunk, S.: Blind universal Bayesian image denoising with Gaussian noise level learning. IEEE Trans. Image Process. 29, 4885–4897 (2020)

    Article  Google Scholar 

  13. El Helou, M., Zhou, R., Süsstrunk, S.: Stochastic frequency masking to improve super-resolution and denoising networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 749–766. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_44

    Chapter  Google Scholar 

  14. Foi, A., Trimeche, M., Katkovnik, V., Egiazarian, K.: Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data. IEEE Trans. Image Process. 17, 1737–1754 (2008)

    Article  MathSciNet  Google Scholar 

  15. Gharbi, M., Chaurasia, G., Paris, S., Durand, F.: Deep joint demosaicking and denoising. TOG 35, 1–12 (2016)

    Article  Google Scholar 

  16. Gu, J., Lu, H., Zuo, W., Dong, C.: Blind super-resolution with iterative kernel correction. In: CVPR (2019)

    Google Scholar 

  17. Gustafsson, M.G.: Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198, 82–87 (2000)

    Article  Google Scholar 

  18. Harandi, M., Salzmann, M., Porikli, F.: Bregman divergences for infinite dimensional covariance matrices. In: CVPR (2014)

    Google Scholar 

  19. Hein, B., Willig, K.I., Hell, S.W.: Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell. Proc. Natl. Acad. Sci. 105(38), 14271–14276 (2008)

    Article  Google Scholar 

  20. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: CVPR (2015)

    Google Scholar 

  21. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  22. Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: CVPR (2016)

    Google Scholar 

  23. Klatzer, T., Hammernik, K., Knobelreiter, P., Pock, T.: Learning joint demosaicing and denoising based on sequential energy minimization. In: ICCP (2016)

    Google Scholar 

  24. Krull, A., Buchholz, T.O., Jug, F.: Noise2Void-learning denoising from single noisy images. In: CVPR (2019)

    Google Scholar 

  25. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR (2017)

    Google Scholar 

  26. Lehtinen, J., et al.: Noise2Noise: learning image restoration without clean data. In: ICML (2018)

    Google Scholar 

  27. Li, Z., Yang, J., Liu, Z., Yang, X., Jeon, G., Wu, W.: Feedback network for image super-resolution. In: CVPR (2019)

    Google Scholar 

  28. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: CVPR (2017)

    Google Scholar 

  29. Luisier, F., Blu, T., Unser, M.: Image denoising in mixed Poisson-Gaussian noise. IEEE Trans. Image Process. (2011)

    Google Scholar 

  30. Makitalo, M., Foi, A.: Optimal inversion of the generalized Anscombe transformation for Poisson-Gaussian noise. IEEE Trans. Image Process. 22(1), 91–103 (2012)

    Article  MathSciNet  Google Scholar 

  31. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV (2001)

    Google Scholar 

  32. Matsui, Y., et al.: Sketch-based manga retrieval using manga109 dataset. Multimedia Tools Appl. 76(20), 21811–21838 (2016). https://doi.org/10.1007/s11042-016-4020-z

    Article  Google Scholar 

  33. Miao, S., Zhu, Y.: Handling noise in image deblurring via joint learning. arXiv preprint (2020)

    Google Scholar 

  34. Li, P., Xie, J., Wang, Q., Zuo, W.: Is second-order information helpful for large-scale visual recognition? In: ICCV (2017)

    Google Scholar 

  35. Plotz, T., Roth, S.: Benchmarking denoising algorithms with real photographs. In: CVPR (2017)

    Google Scholar 

  36. Qian, G., Gu, J., Ren, J.S., Dong, C., Zhao, F., Lin, J.: Trinity of pixel enhancement: a joint solution for demosaicking, denoising and super-resolution. arXiv preprint (2019)

    Google Scholar 

  37. Rust, M.J., Bates, M., Zhuang, X.: Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3(10), 793–796 (2006)

    Article  Google Scholar 

  38. Sajjadi, M.S., Scholkopf, B., Hirsch, M.: EnhanceNet: single image super-resolution through automated texture synthesis. In: ICCV (2017)

    Google Scholar 

  39. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: CVPR (2016)

    Google Scholar 

  40. Shroff, H., Galbraith, C.G., Galbraith, J.A., Betzig, E.: Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat. Methods 5(5), 417–423 (2008)

    Article  Google Scholar 

  41. Tai, Y., Yang, J., Liu, X., Xu, C.: MemNet: a persistent memory network for image restoration. In: ICCV (2017)

    Google Scholar 

  42. Timofte, R., Gu, S., Wu, J., Van Gool, L.: NTIRE 2018 challenge on single image super-resolution: methods and results. In: CVPRW (2018)

    Google Scholar 

  43. Vasu, S., Thekke Madam, N., Rajagopalan, A.N.: Analyzing perception-distortion tradeoff using enhanced perceptual super-resolution network. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 114–131. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_8

    Chapter  Google Scholar 

  44. Verveer, P.J., Gemkow, M.J., Jovin, T.M.: A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy. J. Microsc. 193(50–61), 6 (1999)

    Google Scholar 

  45. Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 63–79. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_5

    Chapter  Google Scholar 

  46. Weigert, M., et al.: Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat. Methods 15(12), 1090–1097 (2018)

    Article  Google Scholar 

  47. Xie, J., Feris, R.S., Yu, S.S., Sun, M.T.: Joint super resolution and denoising from a single depth image. TMM (2015)

    Google Scholar 

  48. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27413-8_47

    Chapter  Google Scholar 

  49. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 2(5), 10 (2017)

    MathSciNet  MATH  Google Scholar 

  50. Zhang, K., Zuo, W., Zhang, L.: Deep plug-and-play super-resolution for arbitrary blur kernels. In: CVPR (2019)

    Google Scholar 

  51. Zhang, W., Liu, Y., Dong, C., Qiao, Y.: RankSRGAN: generative adversarial networks with ranker for image super-resolution. In: ICCV (2019)

    Google Scholar 

  52. Zhang, X., Chen, Q., Ng, R., Koltun, V.: Zoom to learn, learn to zoom. In: CVPR (2019)

    Google Scholar 

  53. Zhang, Y., et al.: A Poisson-Gaussian denoising dataset with real fluorescence microscopy images. In: CVPR (2019)

    Google Scholar 

  54. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 294–310. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_18

    Chapter  Google Scholar 

  55. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: TPAMI (2020)

    Google Scholar 

  56. Zhang, Z., Wang, Z., Lin, Z., Qi, H.: Image super-resolution by neural texture transfer. In: CVPR (2019)

    Google Scholar 

  57. Zhou, R., Achanta, R., Süsstrunk, S.: Deep residual network for joint demosaicing and super-resolution. In: Color and Imaging Conference (2018)

    Google Scholar 

  58. Zhou, R., Süsstrunk, S.: Kernel modeling super-resolution on real low-resolution images. In: ICCV (2019)

    Google Scholar 

  59. Zoran, D., Weiss, Y.: From learning models of natural image patches to whole image restoration. In: ICCV (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majed El Helou .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2141 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, R., El Helou, M., Sage, D., Laroche, T., Seitz, A., Süsstrunk, S. (2020). W2S: Microscopy Data with Joint Denoising and Super-Resolution for Widefield to SIM Mapping. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12535. Springer, Cham. https://doi.org/10.1007/978-3-030-66415-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66415-2_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66414-5

  • Online ISBN: 978-3-030-66415-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics