Skip to main content

Gold Nanoparticles-Based Point-of-Care Colorimetric Diagnostic for Plant Diseases

  • Chapter
  • First Online:
Biosensors in Agriculture: Recent Trends and Future Perspectives

Part of the book series: Concepts and Strategies in Plant Sciences ((CSPS))

Abstract

Plant diseases caused by pathogens such as fungi, viruses, and bacteria create a substantial loss worldwide that leads to a severe threat to food security and human health. Therefore, disease management is a priority in agricultural-based countries. The detection of plant-pathogens is the primary step in disease management, which is crucial for plant health monitoring. Presently, few immunological methods are utilized to detect plant pathogens such as direct tissue blot immunoassay, enzyme-linked immunosorbent assay, and fluorometric immunoassay. DNA-based detection methods are also keenly applied for plant pathogen identification and detection, such as polymerase chain reaction, real-time PCR, and dot blot hybridization. However, these detection methods are inherited with some disadvantages like costly antibodies, complicated procedures, challenge to produce specific antibodies, expensive equipment, and susceptibility to contamination. This chapter reviews an instrument-free, instant, highly selective, and sensitive colorimetric detection of plant pathogens. The colorimetric detection is working on localized surface plasmon resonance properties of AuNPs, which causes the colour change of assay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agarwal M et al (2016) Catalytic degradation of methylene blue by biosynthesised copper nanoflowers using F. benghalensis leaf extract. IET Nanobiotechnol 10:321–325

    Article  PubMed  PubMed Central  Google Scholar 

  • Agrios GN (2005) Plant pathology. Elsevier Academic Press, Amsterdam, The Netherlands

    Google Scholar 

  • Assah E et al (2018) Rapid colorimetric detection of p 53 protein function using DNA-gold nanoconjugates with applications for drug discovery and cancer diagnostics. Colloids Surf, B 169:214–221

    Article  CAS  Google Scholar 

  • Bhamore J, Rawat KA, Basu H, Singhal RK, Kailasa SK (2015) Influence of molecular assembly and NaCl concentration on gold nanoparticles for colorimetric detection of cysteine and glutathione. Sens Actuators B: Chem 212:526–535

    Article  CAS  Google Scholar 

  • Brasileiro BTRV, Coimbra MRM, Morais Jr MAd, Oliveira NTd (2004) Genetic variability within Fusarium solani specie as revealed by PCR-fingerprinting based on PCR markers. Braz J Microbiol 35:205–210

    Google Scholar 

  • Carrasco-Ballesteros S, Castillo P, Adams BJ, Pérez-Artés E (2007) Identification of Pratylenchus thornei, the cereal and legume root-lesion nematode, based on SCAR-PCR and satellite DNA. Eur J Plant Pathol 118:115–125

    Article  CAS  Google Scholar 

  • Chang W, Liu W, Liu Y, Zhan F, Chen H, Lei H, Liu Y (2019) Colorimetric detection of nucleic acid sequences in plant pathogens based on CRISPR/Cas9 triggered signal amplification. Microchim Acta 186:243

    Article  CAS  Google Scholar 

  • Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  PubMed  Google Scholar 

  • Das SK, Das AR, Guha AK (2010) Microbial synthesis of multishaped gold nanostructures. Small 6:1012–1021

    Article  CAS  PubMed  Google Scholar 

  • Dharanivasan G, Riyaz SM, Jesse DMI, Muthuramalingam TR, Rajendran G, Kathiravan K (2016) DNA templated self-assembly of gold nanoparticle clusters in the colorimetric detection of plant viral DNA using a gold nanoparticle conjugated bifunctional oligonucleotide probe. RSC Adv 6:11773–11785

    Article  CAS  Google Scholar 

  • Drygin YF et al (2012) Highly sensitive field test lateral flow immunodiagnostics of PVX infection. Appl Microbiol Biotechnol 93:179–189

    Article  PubMed  CAS  Google Scholar 

  • El-Brolossy T, Abdallah T, Mohamed MB, Abdallah S, Easawi K, Negm S, Talaat H (2008) Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by Photoacoustic technique. Eur Phys J Special Topics 153:361–364

    Article  Google Scholar 

  • Fang Y, Ramasamy RP (2015) Current and prospective methods for plant disease detection. Biosensors 5:537–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox A, Mumford R (2017) Plant viruses and viroids in the United Kingdom: an analysis of first detections and novel discoveries from 1980 to 2014. Virus Res 241:10–18

    Article  CAS  PubMed  Google Scholar 

  • Gukowsky JC, Tan C, Han Z, He L (2018) Cysteamine-Modified Gold Nanoparticles as a Colorimetric Sensor for the Rapid Detection of Gentamicin. J Food Sci 83:1631–1638

    Article  CAS  PubMed  Google Scholar 

  • Gupta RK, Srinivasan M, Dharmarajan R (2012) Synthesis of 16-Mercaptohexadecanoic acid capped gold nanoparticles and their immobilization on a substrate. Mater Lett 67:315–319

    Article  CAS  Google Scholar 

  • Horsfall JG (2012) Plant disease: an advanced treatise: how pathogens induce disease. Elsevier

    Google Scholar 

  • Hu T, Lu S, Chen C, Sun J, Yang X (2017) Colorimetric sandwich immunosensor for Aβ (1–42) based on dual antibody-modified gold nanoparticles. Sens Actuators B: Chem 243:792–799

    Article  CAS  Google Scholar 

  • Jain A, Sarsaiya S, Wu Q, Lu Y, Shi J (2019) A review of plant leaf fungal diseases and its environment speciation. Bioengineered 10:409–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarocka U, Radecka H, Malinowski T, Michalczuk L, Radecki J (2013) Detection of Prunus Necrotic Ringspot Virus in plant extracts with impedimetric immunosensor based on glassy carbon electrode. Electroanalysis 25:433–438

    Article  CAS  Google Scholar 

  • Khater M, de la Escosura-Muñiz A, Merkoçi A (2017) Biosensors for plant pathogen detection. Biosens Bioelectron 93:72–86

    Article  CAS  PubMed  Google Scholar 

  • Khoodoo M, Sahin F, Jaufeerally-Fakim Y (2005) Sensitive detection of Xanthomonas axonopodis pv. dieffenbachiae on Anthurium andreanum by immunocapture-PCR (IC-PCR) using primers designed from sequence characterized amplified regions (SCAR) of the blight pathogen. Eur J Plant Pathol 112:379–390

    Article  CAS  Google Scholar 

  • Li H, Rothberg L (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci 101:14036–14039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Lämmerhofer M (2019) Functionalized gold nanoparticles for sample preparation: a review. Electrophoresis 40:2438–2461

    CAS  PubMed  Google Scholar 

  • Liu Z, Xia X, Yang C, Wang L (2015) Visual detection of Maize chlorotic mottle virus using unmodified gold nanoparticles. RSC Adv 5:100891–100897

    Article  CAS  Google Scholar 

  • Liu G et al (2016) Colorimetric sensing of atrazine in rice samples using cysteamine functionalized gold nanoparticles after solid phase extraction. Anal Methods 8:52–56

    Article  CAS  Google Scholar 

  • Liu C, Zhang J, Zhang X, Zhao L, Li S (2018) Enantiomeric separation of adrenaline, noradrenaline, and isoprenaline by capillary electrophoresis using streptomycin-modified gold nanoparticles. Microchim Acta 185:227

    Article  CAS  Google Scholar 

  • Mahajan R, Bhadwal AS, Kumar N, Madhusudanan M, Pudake RN, Tripathi RM (2016) Green synthesis of highly stable carbon nanodots and their photocatalytic performance. IET Nanobiotechnol 11:360–364

    Article  PubMed Central  Google Scholar 

  • Martín S, Alioto D, Milne R, Guerri J, Moreno P (2002) Detection of Citrus psorosis virus in field trees by direct tissue blot immunoassay in comparison with ELISA, symptomatology, biological indexing and cross-protection tests. Plant Pathol 51:134–141

    Article  Google Scholar 

  • Martinelli F et al (2015) Advanced methods of plant disease detection: a review. Agron Sustain Dev 35:1–25

    Article  Google Scholar 

  • Mehrotra N, Tripathi RM (2015) Short interfering RNA therapeutics: nanocarriers, prospects and limitations. IET Nanobiotechnol 9:386–395

    Article  PubMed  Google Scholar 

  • Mendes R, Carvalhal R, Stach-Machado D, Kubota L (2009) Surface plasmon resonance immunosensor for early diagnosis of Asian rust on soybean leaves. Biosens Bioelectron 24:2483–2487

    Article  CAS  PubMed  Google Scholar 

  • Merighi M, Sandrini A, Landini S, Ghini S, Girotti S, Malaguti S, Bazzi C (2000) Chemiluminescent and colorimetric detection of Erwinia amylovora by immunoenzymatic determination of PCR amplicons from plasmid pEA29. Plant Dis 84:49–54

    Article  CAS  PubMed  Google Scholar 

  • Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  CAS  PubMed  Google Scholar 

  • Nguyen NLT, Kim EJ, Chang S-K, Park TJ (2016) Sensitive detection of lead ions using sodium thiosulfate and surfactant-capped gold nanoparticles. BioChip Journal 10:65–73

    Article  CAS  Google Scholar 

  • Punja ZK, De Boer S, Sanfaçon H (2007) Biotechnology and plant disease management. Cabi

    Google Scholar 

  • Raj V, Vijayan AN, Joseph K (2015) Cysteine capped gold nanoparticles for naked eye detection of E. coli bacteria in UTI patients. Sens Bio-sensing Res 5:33–36

    Article  Google Scholar 

  • Razmi A, Golestanipour A, Nikkhah M, Bagheri A, Shamsbakhsh M, Malekzadeh-Shafaroudi S (2019) Localized surface plasmon resonance biosensing of tomato yellow leaf curl virus. J Virol Methods 267:1–7

    Article  CAS  PubMed  Google Scholar 

  • Ruehrwein R, Ward D (1952) Mechanism of clay aggregation by polyelectrolytes. Soil Sci 73:485–492

    Article  CAS  Google Scholar 

  • Salomone A, Mongelli M, Roggero P, Boscia D (2004) Reliability of detection of Citrus tristeza virus by an immunochromatographic lateral flow assay in comparison with ELISA. J Plant Pathol 86:43–48

    CAS  Google Scholar 

  • Sanghi R, Verma P (2010) pH dependant fungal proteins in the ‘green’synthesis of gold nanoparticles. Adv Mater Lett 1:193–199

    Article  Google Scholar 

  • Shahrivari S, Faridbod F, Ganjali MR (2018) Highly selective and sensitive colorimetric determination of Cr3+ ion by 4-amino-5-methyl-4H-1, 2, 4-triazole-3-thiol functionalized Au nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc 191:189–194

    Article  CAS  Google Scholar 

  • Shojaei TR, Salleh MAM, Sijam K, Rahim RA, Mohsenifar A, Safarnejad R, Tabatabaei M (2016) Fluorometric immunoassay for detecting the plant virus Citrus tristeza using carbon nanoparticles acting as quenchers and antibodies labeled with CdTe quantum dots. Microchim Acta 183:2277–2287

    Article  CAS  Google Scholar 

  • Singh PK, Kundu S (2014) Biosynthesis of gold nanoparticles using bacteria. Proc Nat Acad Sci, India B Biol Sci 84:331–336

    Article  CAS  Google Scholar 

  • Stobiecka M, Coopersmith K, Hepel M (2010) Resonance elastic light scattering (RELS) spectroscopy of fast non-Langmuirian ligand-exchange in glutathione-induced gold nanoparticle assembly. J Colloid Interface Sci 350:168–177

    Article  CAS  PubMed  Google Scholar 

  • Thakker JN, Dalwadi P, Dhandhukia PC (2012) Biosynthesis of gold nanoparticles using Fusarium oxysporum f. sp. cubense JT1, a plant pathogenic fungus. ISRN biotechnology. 2013, 515091

    Google Scholar 

  • Toh SY, Citartan M, Gopinath SC, Tang T-H (2015) Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens Bioelectron 64:392–403

    Article  CAS  PubMed  Google Scholar 

  • Tolessa T, Tan Z-Q, Liu J-F (2018) Hydride generation coupled with thioglycolic acid coated gold nanoparticles as simple and sensitive headspace colorimetric assay for visual detection of Sb (III). Anal Chimica Acta 1004:67–73

    Article  CAS  Google Scholar 

  • Tripathi R, Chung SJ (2019) Biogenic nanomaterials: Synthesis, characterization, growth mechanism, and biomedical applications. J Microbiol Methods 157:65–80

    Article  CAS  PubMed  Google Scholar 

  • Tripathi R, Chung SJ (2020) Reclamation of hexavalent chromium using catalytic activity of highly recyclable biogenic Pd (0) nanoparticles. Scientific reports 10:1–14

    Article  CAS  Google Scholar 

  • Tripathi R, Archana S, Shrivastavc B (2012) Biofabrication of gold nanoparticles using leaf extract of Ficus benghalensis and their characterization. Int J Pharma Bio Sci 3:551–558

    Google Scholar 

  • Tripathi RM, Ranac D, Shrivastav A, Singh RP, Shrivastav BR (2013) Biogenic synthesis of silver nanoparticles using saraca indica leaf extract and evaluation of their antibacterial activity. Nano Biomed Eng 5(1):50–56

    Google Scholar 

  • Tripathi R, Bhadwal AS, Gupta RK, Singh P, Shrivastav A, Shrivastav B (2014a) ZnO nanoflowers: novel biogenic synthesis and enhanced photocatalytic activity. J Photochem Photobiol, B 141:288–295

    Article  CAS  Google Scholar 

  • Tripathi R, Gupta RK, Singh P, Bhadwal AS, Shrivastav A, Kumar N, Shrivastav B (2014b) Ultra-sensitive detection of mercury (II) ions in water sample using gold nanoparticles synthesized by Trichoderma harzianum and their mechanistic approach. Sens Actuators B Chem 204:637–646

    Article  CAS  Google Scholar 

  • Tripathi R, Kumar N, Bhadwal AS, Gupta RK, Shrivastav B, Shrivastav A (2015a) Facile and rapid biomimetic approach for synthesis of HAp nanofibers and evaluation of their photocatalytic activity. Mater Lett 140:64–67

    Article  CAS  Google Scholar 

  • Tripathi RM, Gupta RK, Bhadwal AS, Singh P, Shrivastav A, Shrivastav B (2015b) Fungal biomolecules assisted biosynthesis of Au–Ag alloy nanoparticles and evaluation of their catalytic property. IET Nanobiotechnol 9:178–183

    Article  PubMed  Google Scholar 

  • Tripathi R, Rao RP, Tsuzuki T (2018a) Green synthesis of sulfur nanoparticles and evaluation of their catalytic detoxification of hexavalent chromium in water. RSC advances 8:36345–36352

    Article  CAS  Google Scholar 

  • Tripathi RM, Shrivastav BR, Shrivastav A (2018b) Antibacterial and catalytic activity of biogenic gold nanoparticles synthesised by Trichoderma harzianum. IET Nanobiotechnol 12:509–513

    Article  PubMed  PubMed Central  Google Scholar 

  • Tripathi R et al (2019a) Metal-induced redshift of optical spectra of gold nanoparticles: An instant, sensitive, and selective visual detection of lead ions. Int Biodeterior Biodegradation 144:104740

    Article  CAS  Google Scholar 

  • Tripathi R, Yoon S-Y, Ahn D, Chung SJ (2019b) Facile synthesis of triangular and hexagonal anionic gold nanoparticles and evaluation of their cytotoxicity. Nanomaterials 9:1774

    Article  CAS  PubMed Central  Google Scholar 

  • Verma MS, Rogowski JL, Jones L, Gu FX (2015) Colorimetric biosensing of pathogens using gold nanoparticles. Biotechnol Adv 33:666–680

    Article  CAS  PubMed  Google Scholar 

  • Vincelli P, Tisserat N (2008) Nucleic acid–based pathogen detection in applied plant pathology. Plant Dis 92:660–669

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Yu C (2013) Detection of chemical pollutants in water using gold nanoparticles as sensors: a review. Rev Anal Chem 32:1–14

    Article  CAS  Google Scholar 

  • Wang L, Liu Z, Xia X, Yang C, Huang J, Wan S (2017) Colorimetric detection of Cucumber green mottle mosaic virus using unmodified gold nanoparticles as colorimetric probes. J Virol Methods 243:113–119

    Article  CAS  PubMed  Google Scholar 

  • Ward E, Foster SJ, Fraaije BA, Mccartney HA (2004) Plant pathogen diagnostics: immunological and nucleic acid-based approaches. Ann Appl Biol 145:1–16

    Article  CAS  Google Scholar 

  • Wee E, Lau H, Botella J, Trau M (2015) Re-purposing bridging flocculation for on-site, rapid, qualitative DNA detection in resource-poor settings. Chem Commun 51:5828–5831

    Article  CAS  Google Scholar 

  • Xia N, Zhou B, Huang N, Jiang M, Zhang J, Liu L (2016) Visual and fluorescent assays for selective detection of beta-amyloid oligomers based on the inner filter effect of gold nanoparticles on the fluorescence of CdTe quantum dots. Biosens Bioelectron 85:625–632

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Wang J, Yang F, Jiao K, Yang X (2009) Label-free colorimetric detection of small molecules utilizing DNA oligonucleotides and silver nanoparticles. Small 5:2669–2672

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Dong S, Hao J, Cui J, Hoffmann H (2017) Surfactant-modified ultrafine gold nanoparticles with magnetic responsiveness for reversible convergence and release of biomacromolecules. Langmuir 33:3047–3055

    Article  CAS  PubMed  Google Scholar 

  • Yang L et al (2016) Highly selective and sensitive electrochemiluminescence biosensor for p 53 DNA sequence based on nicking endonuclease assisted target recycling and hyperbranched rolling circle amplification. Anal Chem 88:5097–5103

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Xu X, Yang X (2012) Highly specific colorimetric recognition and sensing of sulfide with glutathione-modified gold nanoparticle probe based on an anion-for-molecule ligand exchange reaction. Analyst 137:1556–1558

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y et al (2016) Colorimetric sensor for cysteine in human urine based on novel gold nanoparticles. Talanta 161:520–527

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Mani Tripathi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tripathi, R.M., Sharma, P. (2021). Gold Nanoparticles-Based Point-of-Care Colorimetric Diagnostic for Plant Diseases. In: Pudake, R.N., Jain, U., Kole, C. (eds) Biosensors in Agriculture: Recent Trends and Future Perspectives. Concepts and Strategies in Plant Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-66165-6_10

Download citation

Publish with us

Policies and ethics