Skip to main content

Deconstruction of Lignocellulose Recalcitrance by Organosolv Fractionating Pretreatment for Enzymatic Hydrolysis

  • Chapter
  • First Online:
Emerging Technologies for Biorefineries, Biofuels, and Value-Added Commodities

Abstract

Lignocellulosic biomass is a potential feedstock to produce the second-generation cellulosic ethanol and high-value-added chemicals. In order to increase the enzymatic digestibility of lignocellulosic biomass for efficient bioconversion, various pretreatment approaches have been studied. Among them, organosolv pretreatment is promising owing to its ability to achieve a biomass fractionation in one-pot process with efficient enhancement of the enzymatic digestibility. In this chapter, the research progress in recent years regarding different types of organosolv fractionating pretreatment methods (e.g., alcohol-based, organic acid-based, ketone-based, etc.) has been discussed, in terms of process operation, mechanism for improving enzymatic digestibility, and the lignin reactions during pretreatment. Organosolv fractionating pretreatment not only improves the enzymatic efficiency of the biomass but also shows great potential to achieve a full utilization of the main components. However, most existing organosolv-based biorefineries are just in pilot or demonstration scale mainly due to the high operation cost and energy consumption. To improve the economic feasibility of the organosolv pretreatment, more products with high value added should also be developed in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agnihotri, S., Johnsen, I. A., Bøe, M. S., Øyaas, K., & Moe, S. (2015). Ethanol organosolv pretreatment of softwood (Picea abies) and sugarcane bagasse for biofuel and biorefinery applications. Wood Science and Technology, 49(5), 881–896.

    Article  Google Scholar 

  2. Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology, 101(13), 4851–4861.

    Article  Google Scholar 

  3. Amiri, H., Karimi, K., & Zilouei, H. (2014). Organosolv pretreatment of rice straw for efficient acetone, butanol, and ethanol production. Bioresource Technology, 152, 450–456.

    Article  Google Scholar 

  4. Araque, E., Parra, C., Freer, J., Contreras, D., Rodríguez, J., Mendonça, R., & Baeza, J. (2008). Evaluation of organosolv pretreatment for the conversion of Pinus radiata D. Don to ethanol. Enzyme and Microbial Technology, 43(2), 214–219.

    Article  Google Scholar 

  5. Arni, S. A. (2018). Extraction and isolation methods for lignin separation from sugarcane bagasse: A review. Industrial Crops and Products, 115, 330–339.

    Article  Google Scholar 

  6. Asadi, N., & Zilouei, H. (2017). Optimization of organosolv pretreatment of rice straw for enhanced biohydrogen production using Enterobacter aerogenes. Bioresource Technology, 227, 335–344.

    Article  Google Scholar 

  7. Bajpai, P. (2010). Overview of pulp and papermaking processes. In Environmentally friendly production of pulp and paper (pp. 8–45). John Wiley & Sons, Inc., New Jersey.

    Google Scholar 

  8. Balakshin, M. Y., Capanema, E. A., & H-m, C. (2007). MWL fraction with a high concentration of lignin-carbohydrate linkages: Isolation and 2D NMR spectroscopic analysis. Holzforschung, 61(1), 1–7.

    Article  Google Scholar 

  9. Borand, M. N., & KaraosmanoÄŸlu, F. (2018). Effects of organosolv pretreatment conditions for lignocellulosic biomass in biorefinery applications: A review. Journal of Renewable and Sustainable Energy, 10(3), 033104.

    Google Scholar 

  10. Bouxin, F. P., Jackson, S. D., & Jarvis, M. C. (2014). Organosolv pretreatment of Sitka spruce wood: Conversion of hemicelluloses to ethyl glycosides. Bioresource Technology, 151, 441–444.

    Article  Google Scholar 

  11. Bozell, J. J., Black, S. K., Myers, M., Cahill, D., Miller, W. P., & Park, S. (2011a). Solvent fractionation of renewable woody feedstocks: Organosolv generation of biorefinery process streams for the production of biobased chemicals. Biomass and Bioenergy, 35(10), 4197–4208.

    Article  Google Scholar 

  12. Bozell, J. J., O'Lenick, C., & Warwick, S. (2011b). Biomass fractionation for the biorefinery: Heteronuclear multiple quantum coherence–nuclear magnetic resonance investigation of lignin isolated from solvent fractionation of switchgrass. Journal of Agricultural and Food Chemistry, 59(17), 9232–9242.

    Article  Google Scholar 

  13. Brudecki, G., Cybulska, I., Rosentrater, K., & Julson, J. (2012). Optimization of clean fractionation processing as a pre-treatment technology for prairie cordgrass. Bioresource Technology, 107, 494–504.

    Article  Google Scholar 

  14. Calvo-Flores, F. G., & Dobado, P. J. A. (2010). Lignin as renewable raw material. ChemSusChem, 3(11), 1227–1235.

    Article  Google Scholar 

  15. Cannella, D., Sveding, P. V., & Jørgensen, H. (2014). PEI detoxification of pretreated spruce for high solids ethanol fermentation. Applied Energy, 132, 394–403.

    Article  Google Scholar 

  16. Cateto, C., Hu, G., & Ragauskas, A. (2011). Enzymatic hydrolysis of organosolv Kanlow switchgrass and its impact on cellulose crystallinity and degree of polymerization. Energy & Environmental Science, 4(4), 1516–1521.

    Article  Google Scholar 

  17. Chen, H. (2015). Lignocellulose biorefinery feedstock engineering. In Lignocellulose Biorefinery Engineering (pp. 37–86).

    Chapter  Google Scholar 

  18. Chen, H., Zhao, J., Hu, T., Zhao, X., & Liu, D. (2015). A comparison of several organosolv pretreatments for improving the enzymatic hydrolysis of wheat straw: Substrate digestibility, fermentability and structural features. Applied Energy, 150, 224–232.

    Article  Google Scholar 

  19. Cheng, F., Zhao, X., & Hu, Y. (2018). Lignocellulosic biomass delignification using aqueous alcohol solutions with the catalysis of acidic ionic liquids: A comparison study of solvents. Bioresource Technology, 249, 969–975.

    Article  Google Scholar 

  20. Cui, X., Zhao, X., Zeng, J., Loh, S. K., Choo, Y. M., & Liu, D. (2014). Robust enzymatic hydrolysis of Formiline-pretreated oil palm empty fruit bunches (EFB) for efficient conversion of polysaccharide to sugars and ethanol. Bioresource Technology, 166, 584–591.

    Article  Google Scholar 

  21. Cybulska, I., Brudecki, G. P., Hankerson, B. R., Julson, J. L., & Lei, H. (2013). Catalyzed modified clean fractionation of switchgrass. Bioresource Technology, 127, 92–99.

    Article  Google Scholar 

  22. Del Rio, L. F., Chandra, R. P., & Saddler, J. N. (2010). The effect of varying organosolv pretreatment chemicals on the physicochemical properties and cellulolytic hydrolysis of mountain pine beetle-killed lodgepole pine. Applied Biochemistry and Biotechnology, 161(1–8), 1–21.

    Google Scholar 

  23. Deshavath, N. N., Veeranki, V. D., & Goud, V. V. (2019). Lignocellulosic feedstocks for the production of bioethanol: Availability, structure, and composition. In Sustainable Bioenergy (pp. 1–19).

    Google Scholar 

  24. Diaz, M. J., Huijgen, W. J., van der Laan, R. R., Reith, J. H., Cara, C., & Castro, E. (2011). Organosolv pretreatment of olive tree biomass for fermentable sugars. Holzforschung, 65(2), 177–183.

    Article  Google Scholar 

  25. Du, X., Lucia, L. A., & Ghiladi, R. A. (2016). Development of a highly efficient pretreatment sequence for the enzymatic saccharification of loblolly pine wood. ACS Sustainable Chemistry & Engineering, 4(7), 3669–3678.

    Article  Google Scholar 

  26. Dziekońska-Kubczak, U., Berłowska, J., Dziugan, P., Patelski, P., Balcerek, M., Pielech-Przybylska, K., & Robak, K. (2019). Two-stage pretreatment to improve saccharification of oat straw and Jerusalem artichoke biomass. Energies, 12(9), 1715.

    Article  Google Scholar 

  27. Ebrahimi, M., Caparanga, A. R., Ordono, E. E., Villaflores, O. B., & Pouriman, M. (2017). Effect of ammonium carbonate pretreatment on the enzymatic digestibility, structural characteristics of rice husk and bioethanol production via simultaneous saccharification and fermentation process with Saccharomyces cerevisiae Hansen 2055. Industrial Crops and Products, 101, 84–91.

    Article  Google Scholar 

  28. Ede, R., Brunow, G., Poppius, K., Sundquist, J., & Hortling, B. (1988). Formic acid/peroxyformic acid pulping. Nordic Pulp & Paper Research Journal, 3(3), 119–123.

    Article  Google Scholar 

  29. El Hage, R., Brosse, N., Sannigrahi, P., & Ragauskas, A. (2010). Effects of process severity on the chemical structure of Miscanthus ethanol organosolv lignin. Polymer Degradation and Stability, 95(6), 997–1003.

    Article  Google Scholar 

  30. Farmanbordar, S., Amiri, H., & Karimi, K. (2018). Simultaneous organosolv pretreatment and detoxification of municipal solid waste for efficient biobutanol production. Bioresource Technology, 270, 236–244.

    Article  Google Scholar 

  31. Gandolfi, S., Ottolina, G., Consonni, R., Riva, S., & Patel, I. (2014). Fractionation of hemp hurds by organosolv pretreatment and its effect on production of lignin and sugars. ChemSusChem, 7(7), 1991–1999.

    Article  Google Scholar 

  32. Ghosh, A., Bai, X., & Brown, R. C. (2018). Solubilized carbohydrate production by acid-catalyzed depolymerization of cellulose in polar aprotic solvents. ChemistrySelect, 3(17), 4777–4785.

    Article  Google Scholar 

  33. Ghosh, A., & Brown, R. C. (2019). Factors influencing cellulosic sugar production during acid-catalyzed solvent liquefaction in 1, 4-dioxane. ACS Sustainable Chemistry & Engineering, 7(21), 18076–18084.

    Article  Google Scholar 

  34. Ghosh, A., Brown, R. C., & Bai, X. (2016). Production of solubilized carbohydrate from cellulose using non-catalytic, supercritical depolymerization in polar aprotic solvents. Green Chemistry, 18(4), 1023–1031.

    Article  Google Scholar 

  35. Gierer, J. (1980). Chemical aspects of kraft pulping. Wood Science and Technology, 14(4), 241–266.

    Article  Google Scholar 

  36. Gierer, J. (1982). The chemistry of delignification. A general concept. Holzforschung, 36(1), 43–51.

    Article  Google Scholar 

  37. Gierer, J. (1985). Chemistry of delignification. Wood Science and Technology, 19(4), 289–312.

    Article  Google Scholar 

  38. Glaser, R., & Venus, J. (2018). Co-fermentation of the main sugar types from a beechwood organosolv hydrolysate by several strains of Bacillus coagulans results in effective lactic acid production. Biotechnology Reports, 18, e00245.

    Google Scholar 

  39. Goh, C. S., Tan, H. T., Lee, K. T., & Brosse, N. (2011). Evaluation and optimization of organosolv pretreatment using combined severity factors and response surface methodology. Biomass and Bioenergy, 35(9), 4025–4033.

    Article  Google Scholar 

  40. Guo, F., Fang, Z., & Zhou, T.-J. (2012). Conversion of fructose and glucose into 5-hydroxymethylfurfural with lignin-derived carbonaceous catalyst under microwave irradiation in dimethyl sulfoxide–ionic liquid mixtures. Bioresource Technology, 112, 313–318.

    Article  Google Scholar 

  41. Guo, Z., Zhang, Q., You, T., Ji, Z., Zhang, X., Qin, Y., & Xu, F. (2019a). Heteropoly acids enhanced neutral deep eutectic solvent pretreatment for enzymatic hydrolysis and ethanol fermentation of Miscanthus x giganteus under mild conditions. Bioresource Technology, 293, 122036.

    Article  Google Scholar 

  42. Guo, Z., Zhang, Q., You, T., Zhang, X., Xu, F., & Wu, Y. (2019b). Short-time deep eutectic solvent pretreatment for enhanced enzymatic saccharification and lignin valorization. Green Chemistry, 21(11), 3099–3108.

    Article  Google Scholar 

  43. Hallac, B. B., Ray, M., Murphy, R. J., & Ragauskas, A. J. (2010a). Correlation between anatomical characteristics of ethanol organosolv pretreated Buddleja davidii and its enzymatic conversion to glucose. Biotechnology and Bioengineering, 107(5), 795–801.

    Article  Google Scholar 

  44. Hallac, B. B., Sannigrahi, P., Pu, Y., Ray, M., Murphy, R. J., & Ragauskas, A. J. (2010b). Effect of ethanol organosolv pretreatment on enzymatic hydrolysis of Buddleja davidii stem biomass. Industrial and Engineering Chemistry Research, 49(4), 1467–1472.

    Article  Google Scholar 

  45. Hideno, A., Kawashima, A., Endo, T., Honda, K., & Morita, M. (2013). Ethanol-based organosolv treatment with trace hydrochloric acid improves the enzymatic digestibility of Japanese cypress (Chamaecyparis obtusa) by exposing nanofibers on the surface. Bioresource Technology, 132, 64–70.

    Article  Google Scholar 

  46. Horn, S. J., Vaaje-Kolstad, G., Br, W., & Eijsink, V. G. (2012). Novel enzymes for the degradation of cellulose. Biotechnology for Biofuels, 5(1), 45.

    Google Scholar 

  47. Huijgen, W. J., Reith, J. H., & den Uil, H. (2010). Pretreatment and fractionation of wheat straw by an acetone-based organosolv process. Industrial and Engineering Chemistry Research, 49(20), 10132–10140.

    Article  Google Scholar 

  48. Huijgen, W. J., Smit, A. T., Reith, J. H., & Hd, U. (2011). Catalytic organosolv fractionation of willow wood and wheat straw as pretreatment for enzymatic cellulose hydrolysis. Journal of Chemical Technology and Biotechnology, 86(11), 1428–1438.

    Article  Google Scholar 

  49. Hundt, M., Schnitzlein, K., & Schnitzlein, M. G. (2013a). Alkaline polyol pulping and enzymatic hydrolysis of hardwood: Effect of pulping severity and pulp composition on cellulase activity and overall sugar yield. Bioresource Technology, 136, 672–679.

    Article  Google Scholar 

  50. Hundt, M., Schnitzlein, K., & Schnitzlein, M. G. (2013b). Alkaline polyol pulping and enzymatic hydrolysis of softwood: Effect of pulping severity and pulp properties on cellulase activity and overall sugar yield. Bioresource Technology, 134, 307–315.

    Article  Google Scholar 

  51. Hussin, M. H., Rahim, A. A., Ibrahim, M. N. M., & Brosse, N. (2013). Physicochemical characterization of alkaline and ethanol organosolv lignins from oil palm (Elaeis guineensis) fronds as phenol substitutes for green material applications. Industrial Crops and Products, 49, 23–32.

    Article  Google Scholar 

  52. Ingram, T., Wörmeyer, K., Lima, J. C. I., Bockemühl, V., Antranikian, G., Brunner, G., & Smirnova, I. (2011). Comparison of different pretreatment methods for lignocellulosic materials. Part I: Conversion of rye straw to valuable products. Bioresource Technology, 102(8), 5221–5228.

    Article  Google Scholar 

  53. Isikgor, F. H., & Becer, C. R. (2015). Lignocellulosic biomass: A sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry, 6(25), 4497–4559.

    Article  Google Scholar 

  54. Jia, L., Qin, Y., Wen, P., Zhang, T., & Zhang, J. (2019). Alkaline post-incubation improves cellulose hydrolysis after γ-valerolactone/water pretreatment. Bioresource Technology, 278, 440–443.

    Article  Google Scholar 

  55. Jin, L., Yu, X., Peng, C., Guo, Y., Zhang, L., Xu, Q., Zhao, Z. K., Liu, Y., & Xie, H. (2018). Fast dissolution pretreatment of the corn stover in gamma-valerolactone promoted by ionic liquids: Selective delignification and enhanced enzymatic saccharification. Bioresource Technology, 270, 537–544.

    Article  Google Scholar 

  56. Kandanelli, R., Thulluri, C., Mangala, R., Rao, P. V. C., Gandham, S., & Velankar, H. R. (2018). A novel ternary combination of deep eutectic solvent-alcohol (DES-OL) system for synergistic and efficient delignification of biomass. Bioresource Technology, 265, 573–576.

    Article  Google Scholar 

  57. Katahira, R., Mittal, A., McKinney, K., Ciesielski, P. N., Donohoe, B. S., Black, S. K., Johnson, D. K., Biddy, M. J., & Beckham, G. T. (2014). Evaluation of clean fractionation pretreatment for the production of renewable fuels and chemicals from corn stover. ACS Sustainable Chemistry & Engineering, 2(6), 1364–1376.

    Article  Google Scholar 

  58. Kim, D. (2018). Physico-chemical conversion of lignocellulose: Inhibitor effects and detoxification strategies: A mini review. Molecules, 23(2), 309.

    Google Scholar 

  59. Kim, K. H., Dutta, T., Sun, J., Simmons, B., & Singh, S. (2018). Biomass pretreatment using deep eutectic solvents from lignin derived phenols. Green Chemistry, 20(4), 809–815.

    Article  Google Scholar 

  60. Kim, Y., Yu, A., Han, M., G-w, C., & Chung, B. (2011a). Enhanced enzymatic saccharification of barley straw pretreated by ethanosolv technology. Applied Biochemistry and Biotechnology, 163(1), 143–152.

    Article  Google Scholar 

  61. Kim, Y., Yu, A., Han, M., Choi, G. W., & Chung, B. (2010). Ethanosolv pretreatment of barley straw with iron (III) chloride for enzymatic saccharification. Journal of Chemical Technology and Biotechnology, 85(11), 1494–1498.

    Google Scholar 

  62. Kim, Y., Yu, A., Han, M., Choi, G. W., & Chung, B. (2011b). Enhanced enzymatic saccharification of barley straw pretreated by ethanosolv technology. Applied Biochemistry and Biotechnology, 163(1), 143–152.

    Article  Google Scholar 

  63. Köchermann, J., Mühlenberg, J., & Klemm, M. (2018). Kinetics of hydrothermal furfural production from organosolv hemicellulose and d-xylose. Industrial and Engineering Chemistry Research, 57(43), 14417–14427.

    Article  Google Scholar 

  64. Koo, B.-W., Kim, H.-Y., Park, N., Lee, S.-M., Yeo, H., & Choi, I.-G. (2011). Organosolv pretreatment of Liriodendron tulipifera and simultaneous saccharification and fermentation for bioethanol production. Biomass and Bioenergy, 35(5), 1833–1840.

    Article  Google Scholar 

  65. Koo, B.-W., Min, B.-C., Gwak, K.-S., Lee, S.-M., Choi, J.-W., Yeo, H., & Choi, I.-G. (2012). Structural changes in lignin during organosolv pretreatment of Liriodendron tulipifera and the effect on enzymatic hydrolysis. Biomass and Bioenergy, 42, 24–32.

    Article  Google Scholar 

  66. Kozlowski, R., & Helwig, M. (1998). Lignocellulosic polymer composites. In Science and technology of polymers and advanced materials (pp. 679–698). Springer, US.

    Google Scholar 

  67. Krishania, M., Kumar, V., Vijay, V. K., & Malik, A. (2012). Opportunities for improvement of process technology for biomethanation processes. Green Processing and Synthesis, 1(1), 49.

    Google Scholar 

  68. Kumar, A. K., & Sharma, S. (2017). Recent updates on different methods of pretreatment of lignocellulosic feedstocks: A review. Bioresources and Bioprocessing, 4(1), 7.

    Article  Google Scholar 

  69. Lai, C., Tu, M., Li, M., & Yu, S. (2014). Remarkable solvent and extractable lignin effects on enzymatic digestibility of organosolv pretreated hardwood. Bioresource Technology, 156, 92–99.

    Article  Google Scholar 

  70. Lee, D. H., Cho, E. Y., Kim, C. J., & Kim, S. B. (2010). Pretreatment of waste newspaper using ethylene glycol for bioethanol production. Biotechnology and Bioprocess Engineering, 15(6), 1094–1101.

    Google Scholar 

  71. Lee, H. V., Hamid, S. B., & Zain, S. K. (2014). Conversion of lignocellulosic biomass to nanocellulose: Structure and chemical process. ScientificWorldJournal, 2014, 631013.

    Article  Google Scholar 

  72. Li, M., Tu, M., Cao, D., Bass, P., & Adhikari, S. (2013a). Distinct roles of residual xylan and lignin in limiting enzymatic hydrolysis of organosolv pretreated loblolly pine and sweetgum. Journal of Agricultural and Food Chemistry, 61(3), 646–654.

    Article  Google Scholar 

  73. Li, M. F., Sun, S. N., Xu, F., & Sun, R. C. (2012a). Organosolv fractionation of lignocelluloses for fuels, chemicals and materials: A biorefinery processing perspective. In Biomass conversion (pp. 341–379). Berlin: Springer.

    Chapter  Google Scholar 

  74. Li, M. F., Yang, S., & Sun, R. C. (2016a). Recent advances in alcohol and organic acid fractionation of lignocellulosic biomass. Bioresource Technology, 200, 971–980.

    Article  Google Scholar 

  75. Li, P., Zhang, Q., Zhang, X., Zhang, X., Pan, X., & Xu, F. (2019a). Subcellular dissolution of xylan and lignin for enhancing enzymatic hydrolysis of microwave assisted deep eutectic solvent pretreated Pinus bungeana Zucc. Bioresource Technology, 288, 121475.

    Article  Google Scholar 

  76. Li, S., Ydna, M. Q.-S., & Jeremy, S. L. (2016b). A mild biomass pretreatment using γ-valerolactone for concentrated sugar production. Green Chemistry, 18(4), 937–943.

    Article  Google Scholar 

  77. Li, Y.-J., Li, H.-Y., Sun, S.-N., & Sun, R.-C. (2019b). Evaluating the efficiency of γ-valerolactone/water/acid system on Eucalyptus pretreatment by confocal Raman microscopy and enzymatic hydrolysis for bioethanol production. Renewable Energy, 134, 228–234.

    Article  Google Scholar 

  78. Li, Z., Jiang, Z., Fei, B., Cai, Z., & Pan, X. (2012b). Ethanosolv pretreatment of bamboo with dilute acid for efficient enzymatic saccharification. In Proceedings of the 55th convention of Society of Wood Science and Technology, August 27–31, 2012 Beijing China. 9, pp 1–9.

    Google Scholar 

  79. Li, Z., Jiang, Z., Fei, B., Pan, X., Cai, Z., & Yu, Y. (2012c). Ethanol organosolv pretreatment of bamboo for efficient enzymatic saccharification. BioResources, 7(3), 3452–3462.

    Google Scholar 

  80. Li, Z., Jiang, Z., Fei, B., Pan, X., Cai, Z., & Yu, Y. (2013b). Ethanosolv with NaOH pretreatment of moso bamboo for efficient enzymatic saccharification. BioResources, 8(3), 4711–4721.

    Article  Google Scholar 

  81. Liu, J., Li, R., Shuai, L., You, J., Zhao, Y., Chen, L., Li, M., Chen, L., Huang, L., & Luo, X. (2017). Comparison of liquid hot water (LHW) and high boiling alcohol/water (HBAW) pretreatments for improving enzymatic saccharification of cellulose in bamboo. Industrial Crops and Products, 107, 139–148.

    Article  Google Scholar 

  82. Liu, Y., Nie, Y., Lu, X., Zhang, X., He, H., Pan, F., Zhou, L., Liu, X., Ji, X., & Zhang, S. (2019a). Cascade utilization of lignocellulosic biomass to high-value products. Green Chemistry, 21(13), 3499–3535.

    Article  Google Scholar 

  83. Liu, Y., Zheng, J., Xiao, J., He, X., Zhang, K., Yuan, S., Peng, Z., Chen, Z., & Lin, X. (2019b). Enhanced enzymatic hydrolysis and lignin extraction of wheat straw by triethylbenzyl ammonium chloride/lactic acid-based deep eutectic solvent pretreatment. ACS Omega, 4(22), 19829–19839.

    Article  Google Scholar 

  84. Liu, Z. H., Qin, L., Li, B.-Z., & Yuan, Y.-J. (2015). Physical and chemical characterizations of corn stover from leading pretreatment methods and effects on enzymatic hydrolysis. ACS Sustainable Chemistry & Engineering, 3(1), 140–146.

    Article  Google Scholar 

  85. Long, J., Li, X., Guo, B., Wang, L., & Zhang, N. (2013). Catalytic delignification of sugarcane bagasse in the presence of acidic ionic liquids. Catalysis Today, 200, 99–105.

    Article  Google Scholar 

  86. Lynam, J. G., Chow, G. I., Hyland, P. L., & Coronella, C. J. (2016). Corn stover pretreatment by ionic liquid and glycerol mixtures with their density, viscosity, and thermogravimetric properties. ACS Sustainable Chemistry & Engineering, 4(7), 3786–3793.

    Article  Google Scholar 

  87. Lynam, J. G., & Coronella, C. J. (2014). Glycerol as an ionic liquid co-solvent for pretreatment of rice hulls to enhance glucose and xylose yield. Bioresource Technology, 166, 471–478.

    Article  Google Scholar 

  88. Lynam, J. G., & Coronella, C. J. (2016). Loblolly pine pretreatment by ionic liquid-glycerol mixtures. Biomass Conversion and Biorefinery, 6(3), 247–260.

    Article  Google Scholar 

  89. Martin-Sampedro, R., Filpponen, I., Hoeger, I. C., Zhu, J. Y., Laine, J., & Rojas, O. J. (2012). Rapid and complete enzyme hydrolysis of lignocellulosic nanofibrils. ACS Macro Letters, 1(11), 1321–1325.

    Article  Google Scholar 

  90. Martino, D. C., Colodette, J. L., Chandra, R., & Saddler, J. (2017). Steam explosion pretreatment used to remove hemicellulose to enhance the production of a eucalyptus organosolv dissolving pulp. Wood Science and Technology, 51(3), 557–569.

    Article  Google Scholar 

  91. McDonough, T. J. (1992). The chemistry of organosolv delignification. Tappi Journal, 76, 186–193.

    Google Scholar 

  92. Menon, V., Prakash, G., & Rao, M. (2010). Value added products from hemicellulose: Biotechnological perspective. Global Journal of Biochemistry, 1(1), 36–67.

    Google Scholar 

  93. Mesa, L., González, E., Cara, C., Ruiz, E., Castro, E., & Mussatto, S. I. (2010a). An approach to optimization of enzymatic hydrolysis from sugarcane bagasse based on organosolv pretreatment. Journal of Chemical Technology and Biotechnology, 85(8), 1092–1098.

    Article  Google Scholar 

  94. Mesa, L., González, E., Ruiz, E., Romero, I., Cara, C., Felissia, F., & Castro, E. (2010b). Preliminary evaluation of organosolv pre-treatment of sugar cane bagasse for glucose production: Application of 23 experimental design. Applied Energy, 87(1), 109–114.

    Article  Google Scholar 

  95. Monrroy, M., Ibanez, J., Melin, V., Baeza, J., Mendonça, R. T., Contreras, D., & Freer, J. (2010). Bioorganosolv pretreatments of P. radiata by a brown rot fungus (Gloephyllum trabeum) and ethanolysis. Enzyme and Microbial Technology, 47(1–2), 11–16.

    Article  Google Scholar 

  96. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673–686.

    Article  Google Scholar 

  97. Mou, H., & Wu, S. (2017). Comparison of hydrothermal, hydrotropic and organosolv pretreatment for improving the enzymatic digestibility of bamboo. Cellulose, 24(1), 85–94.

    Article  Google Scholar 

  98. Muñoz, C., Baeza, J., Freer, J., & Mendonça, R. T. (2011). Bioethanol production from tension and opposite wood of Eucalyptus globulus using organosolv pretreatment and simultaneous saccharification and fermentation. Journal of Industrial Microbiology & Biotechnology, 38(11), 1861.

    Article  Google Scholar 

  99. Mussatto, S. I. (2016). Biomass pretreatment with acids. In Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery (pp. 169–185).

    Chapter  Google Scholar 

  100. Mussatto, S. I., Fernandes, M., Milagres, A. M. F., & Roberto, I. C. (2008). Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewer's spent grain. Enzyme and Microbial Technology, 43(2), 124–129.

    Article  Google Scholar 

  101. Neilson, J., & Shafizadeh, F. (1983). Evaluation of organosolv pulp as a suitable substrate for rapid enzymatic hydrolysis. Biotechnology & Bioengineering (United States), 25(2), 609.

    Google Scholar 

  102. Nitsos, C., Rova, U., & Christakopoulos, P. (2018). Organosolv fractionation of softwood biomass for biofuel and biorefinery applications. Energies, 11(1), 50.

    Article  Google Scholar 

  103. Pan, X., Arato, C., Gilkes, N., Gregg, D., Mabee, W., Pye, K., Xiao, Z., Zhang, X., & Saddler, J. (2005a). Biorefining of softwoods using ethanol organosolv pulping: Preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnology and Bioengineering, 90(4), 473–481.

    Article  Google Scholar 

  104. Pan, X., Dan, X., Gilkes, N., Gregg, D. J., & Saddler, J. N. (2005b). Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content. Applied Biochemistry and Biotechnology, 124(1–3), 1069–1079.

    Article  Google Scholar 

  105. Pan, X., Gilkes, N., Kadla, J., Pye, K., Saka, S., Gregg, D., Ehara, K., Xie, D., Lam, D., & Saddler, J. (2006a). Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: Optimization of process yields. Biotechnology and Bioengineering, 94(5), 851–861.

    Article  Google Scholar 

  106. Pan, X., Gilkes, N., & Saddler, J. N. (2006b). Effect of acetyl groups on enzymatic hydrolysis of cellulosic substrates. Holzforschung, 60(4), 398–401.

    Article  Google Scholar 

  107. Pan, X., Kadla, J. F., Ehara, K., Gilkes, N., & Saddler, J. N. (2006c). Organosolv ethanol lignin from hybrid poplar as a radical scavenger: Relationship between lignin structure, extraction conditions, and antioxidant activity. Journal of Agricultural and Food Chemistry, 54(16), 5806–5813.

    Article  Google Scholar 

  108. Pan, X., Xie, D., Yu, R. W., Lam, D., & Saddler, J. N. (2007). Pretreatment of lodgepole pine killed by mountain pine beetle using the ethanol organosolv process: Fractionation and process optimization. Industrial and Engineering Chemistry Research, 46(8), 2609–2617.

    Article  Google Scholar 

  109. Papa, G., Rodriguez, S., George, A., Schievano, A., Orzi, V., Sale, K. L., Singh, S., Adani, F., & Simmons, B. A. (2015). Comparison of different pretreatments for the production of bioethanol and biomethane from corn stover and switchgrass. Bioresource Technology, 183, 101–110.

    Article  Google Scholar 

  110. Parawira, W., & Tekere, M. (2011). Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: Review. Critical Reviews in Biotechnology, 31(1), 20–31.

    Article  Google Scholar 

  111. Park, N., Kim, H.-Y., Koo, B.-W., Yeo, H., & Choi, I.-G. (2010). Organosolv pretreatment with various catalysts for enhancing enzymatic hydrolysis of pitch pine (Pinus rigida). Bioresource Technology, 101(18), 7046–7053.

    Article  Google Scholar 

  112. Procentese, A., Raganati, F., Olivieri, G., Russo, M. E., Rehmann, L., & Marzocchella, A. (2018). Deep eutectic solvents pretreatment of agro-industrial food waste. Biotechnology for Biofuels, 11, 37.

    Article  Google Scholar 

  113. Qureshi, N., Liu, S., Hughes, S., Palmquist, D., Dien, B., & Saha, B. (2016). Cellulosic butanol (ABE) biofuel production from sweet sorghum bagasse (SSB): Impact of hot water pretreatment and solid loadings on fermentation employing Clostridium beijerinckii P260. Bioenergy Research, 9(4), 1167–1179.

    Article  Google Scholar 

  114. Reddy, N., & Yang, Y. (2005). Biofibers from agricultural byproducts for industrial applications. Trends in Biotechnology, 23(1), 22–27.

    Article  Google Scholar 

  115. Rinaldi, R., Jastrzebski, R., Clough, M. T., Ralph, J., Kennema, M., Bruijnincx, P. C., & Weckhuysen, B. M. (2016). Paving the way for lignin valorisation: Recent advances in bioengineering, biorefining and catalysis. Angewandte Chemie (International Ed. in English), 55(29), 8164–8215.

    Article  Google Scholar 

  116. Romaní, A., Ruiz, H. A., Pereira, F. B., Domingues, L., & Teixeira, J. A. (2013). Fractionation of Eucalyptus globulus wood by glycerol–water pretreatment: Optimization and modeling. Industrial and Engineering Chemistry Research, 52(40), 14342–14352.

    Article  Google Scholar 

  117. Rosales-Calderon, O., & Arantes, V. (2019). A review on commercial-scale high-value products that can be produced alongside cellulosic ethanol. Biotechnology for Biofuels, 12, 240.

    Article  Google Scholar 

  118. Rößiger, B., Röver, R., Unkelbach, G., & Pufky-Heinrich, D. (2017). Production of bio-phenols for industrial application: Scale-up of the base-catalyzed depolymerization of lignin. Green and Sustainable Chemistry, 7(03), 193.

    Article  Google Scholar 

  119. Rubio, M., Tortosa, J. F., Quesada, J., & Gómez, D. (1998). Fractionation of lignocellulosics. Solubilization of corn stalk hemicelluloses by autohydrolysis in aqueous medium. Biomass and Bioenergy, 15(6), 483–491.

    Article  Google Scholar 

  120. Sakdaronnarong, C., Srimarut, N., & Laosiripojana, N. (2015). Polyurethane synthesis from sugarcane bagasse organosolv and Kraft lignin. In Key engineering materials (pp. 527–532). Trans Tech Publ, Switzerland.

    Google Scholar 

  121. Sannigrahi, P., Miller, S. J., & Ragauskas, A. J. (2010). Effects of organosolv pretreatment and enzymatic hydrolysis on cellulose structure and crystallinity in Loblolly pine. Carbohydrate Research, 345(7), 965–970.

    Article  Google Scholar 

  122. Shen, X. J., Wen, J. L., Mei, Q. Q., Chen, X., Sun, D., Yuan, T. Q., & Sun, R. C. (2019). Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization. Green Chemistry, 21(2), 275–283.

    Article  Google Scholar 

  123. Siqueira, G., Arantes, V., Saddler, J. N., Ferraz, A., & Milagres, A. M. F. (2017). Limitation of cellulose accessibility and unproductive binding of cellulases by pretreated sugarcane bagasse lignin. Biotechnology for Biofuels, 10, 176.

    Article  Google Scholar 

  124. Smit, A., & Huijgen, W. (2017). Effective fractionation of lignocellulose in herbaceous biomass and hardwood using a mild acetone organosolv process. Green Chemistry, 19(22), 5505–5514.

    Article  Google Scholar 

  125. Snelders, J., Dornez, E., Benjelloun-Mlayah, B., Huijgen, W. J., de Wild, P. J., Gosselink, R. J., Gerritsma, J., & Courtin, C. M. (2014). Biorefining of wheat straw using an acetic and formic acid based organosolv fractionation process. Bioresource Technology, 156, 275–282.

    Article  Google Scholar 

  126. Sun, S., Sun, S., Cao, X., & Sun, R. (2016). The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresource Technology, 199, 49–58.

    Article  Google Scholar 

  127. Sun, Y., & Cheng, J. (2003). Hydrolysis of lignocellulosic materials for ethanol production. Bioresource Technology, 83(1), 1–11.

    Article  Google Scholar 

  128. Taherzadeh, M. J., & Karimi, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. International Journal of Molecular Sciences, 9(9), 1621–1651.

    Article  Google Scholar 

  129. Tan, H., Yang, R., Sun, W., & Wang, S. (2009). Peroxide− acetic acid pretreatment to remove bagasse lignin prior to enzymatic hydrolysis. Industrial and Engineering Chemistry Research, 49(4), 1473–1479.

    Article  Google Scholar 

  130. Tang, C., Shan, J., Chen, Y., Zhong, L., Shen, T., Zhu, C., & Ying, H. (2017). Organic amine catalytic organosolv pretreatment of corn stover for enzymatic saccharification and high-quality lignin. Bioresource Technology, 232, 222–228.

    Article  Google Scholar 

  131. Thi, S., & Lee, K. M. (2019). Comparison of deep eutectic solvents (DES) on pretreatment of oil palm empty fruit bunch (OPEFB): Cellulose digestibility, structural and morphology changes. Bioresource Technology, 282, 525–529.

    Article  Google Scholar 

  132. Timung, R., Mohan, M., Chilukoti, B., Sasmal, S., Banerjee, T., & Goud, V. V. (2015). Optimization of dilute acid and hot water pretreatment of different lignocellulosic biomass: A comparative study. Biomass and Bioenergy, 81, 9–18.

    Article  Google Scholar 

  133. Tomás-Pejó, E., Fermoso, J., Herrador, E., Hernando, H., Jiménez-Sánchez, S., Ballesteros, M., González-Fernández, C., & Serrano, D. P. (2017). Valorization of steam-exploded wheat straw through a biorefinery approach: Bioethanol and bio-oil co-production. Fuel, 199, 403–412.

    Article  Google Scholar 

  134. Tri, C. L., Khuong, L. D., & Kamei, I. (2018). The improvement of sodium hydroxide pretreatment in bioethanol production from Japanese bamboo Phyllostachys edulis using the white rot fungus Phlebia sp. MG-60. International Biodeterioration & Biodegradation, 133, 86–92.

    Article  Google Scholar 

  135. Trinh, L. T. P., Lee, J.-W., & Lee, H.-J. (2016). Acidified glycerol pretreatment for enhanced ethanol production from rice straw. Biomass and Bioenergy, 94, 39–45.

    Article  Google Scholar 

  136. Vanderghem, C., Brostaux, Y., Jacquet, N., Blecker, C., & Paquot, M. (2012). Optimization of formic/acetic acid delignification of Miscanthus× giganteus for enzymatic hydrolysis using response surface methodology. Industrial Crops and Products, 35(1), 280–286.

    Article  Google Scholar 

  137. Vanneste, J., Ennaert, T., Vanhulsel, A., & Sels, B. (2017). Unconventional pretreatment of lignocellulose with low-temperature plasma. ChemSusChem, 10(1), 14–31.

    Article  Google Scholar 

  138. Vazquez, G., Antorrena, G., Gonzalez, J., Freire, S., & Crespo, I. (2000). The influence of acetosolv pulping conditions on the enzymatic hydrolysis of Eucalyptus pulps. Wood Science and Technology, 34(4), 345–354.

    Article  Google Scholar 

  139. Villaverde, J. J., Li, J., Ek, M., Ligero, P., & de Vega, A. (2009). Native lignin structure of Miscanthus x giganteus and its changes during acetic and formic acid fractionation. Journal of Agricultural and Food Chemistry, 57(14), 6262–6270.

    Article  Google Scholar 

  140. Voelker, S. L., Lachenbruch, B., Meinzer, F. C., & Strauss, S. H. (2011). Reduced wood stiffness and strength, and altered stem form, in young antisense 4CL transgenic poplars with reduced lignin contents. The New Phytologist, 189(4), 1096–1109.

    Article  Google Scholar 

  141. Wang, X., & Rinaldi, R. (2016). Bifunctional Ni catalysts for the one-pot conversion of Organosolv lignin into cycloalkanes. Catalysis Today, 269, 48–55.

    Article  Google Scholar 

  142. Wildschut, J., Smit, A. T., Reith, J. H., & Huijgen, W. J. (2013). Ethanol-based organosolv fractionation of wheat straw for the production of lignin and enzymatically digestible cellulose. Bioresource Technology, 135, 58–66.

    Article  Google Scholar 

  143. Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., & Lee, Y. Y. (2005). Coordinated development of leading biomass pretreatment technologies. Bioresource Technology, 96(18), 1959–1966.

    Article  Google Scholar 

  144. Xu, L., & Tschirner, U. W. (2012). Peracetic acid pretreatment of alfalfa stem and aspen biomass. BioResources, 7(1), 0203–0216.

    Google Scholar 

  145. Xue, B. L., Wen, J. L., & Sun, R. C. (2015). Ethanol organosolv lignin as a reactive filler for acrylamide-based hydrogels. Journal of Applied Polymer Science, 132(40), 42638.

    Google Scholar 

  146. Yu, G., Li, B., Liu, C., Zhang, Y., Wang, H., & Mu, X. (2013a). Fractionation of the main components of corn stover by formic acid and enzymatic saccharification of solid residue. Industrial Crops and Products, 50, 750–757.

    Article  Google Scholar 

  147. Yu, H., Xing, Y., Lei, F., Liu, Z., Liu, Z., & Jiang, J. (2014). Improvement of the enzymatic hydrolysis of furfural residues by pretreatment with combined green liquor and ethanol organosolv. Bioresource Technology, 167, 46–52.

    Article  Google Scholar 

  148. Yu, H., You, Y., Lei, F., Liu, Z., Zhang, W., & Jiang, J. (2015). Comparative study of alkaline hydrogen peroxide and organosolv pretreatments of sugarcane bagasse to improve the overall sugar yield. Bioresource Technology, 187, 161–166.

    Article  Google Scholar 

  149. Yu, H. L., Tang, Y., Xing, Y., Zhu, L.-W., & Jiang, J.-X. (2013b). Improvement of the enzymatic hydrolysis of furfural residues by pretreatment with combined green liquor and hydrogen peroxide. Bioresource Technology, 147(complete), 29–36.

    Article  Google Scholar 

  150. Yuan, Z., Wen, Y., & Li, G. (2018). Production of bioethanol and value added compounds from wheat straw through combined alkaline/alkaline-peroxide pretreatment. Bioresource Technology, 259, 228.

    Article  Google Scholar 

  151. Zhang, K., Pei, Z., & Wang, D. (2016a). Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review. Bioresource Technology, 199, 21–33.

    Article  Google Scholar 

  152. Zhang, Q., Huang, H., Han, H., Qiu, Z., & Achal, V. (2017). Stimulatory effect of in-situ detoxification on bioethanol production by rice straw. Energy, 135, 32–39.

    Article  Google Scholar 

  153. Zhang, X., Zhao, W., Li, Y., Li, C., Yuan, Q., & Cheng, G. (2016b). Synergistic effect of pretreatment with dimethyl sulfoxide and an ionic liquid on enzymatic digestibility of white poplar and pine. RSC Advances, 6(67), 62278–62285.

    Article  Google Scholar 

  154. Zhang, Y., Ye, Y. Y., Fan, J., & Chang, J. (2013a). Selective production of phenol, guaiacol and 2, 6-dimethoxyphenol by alkaline hydrothermal conversion of lignin. Journal of Biobased Materials and Bioenergy, 7(6), 696–701.

    Article  Google Scholar 

  155. Zhang, Y. H. P., Ding, S. Y., Mielenz, J. R., Cui, J. B., Elander, R. T., Laser, M., Himmel, M. E., McMillan, J. R., & Lynd, L. R. (2007). Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnology and Bioengineering, 97(2), 214–223.

    Article  Google Scholar 

  156. Zhang, Z., Rackemann, D. W., Doherty, W. O., & O’Hara, I. M. (2013b). Glycerol carbonate as green solvent for pretreatment of sugarcane bagasse. Biotechnology for Biofuels, 6(1), 153.

    Article  Google Scholar 

  157. Zhang, Z., Wong, H. H., Albertson, P. L., Doherty, W. O., & O’Hara, I. M. (2013c). Laboratory and pilot scale pretreatment of sugarcane bagasse by acidified aqueous glycerol solutions. Bioresource Technology, 138, 14–21.

    Article  Google Scholar 

  158. Zhao, H., Jones, C. L., Baker, G. A., Xia, S., Olubajo, O., & Person, V. N. (2009a). Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. Journal of Biotechnology, 139(1), 47–54.

    Article  Google Scholar 

  159. Zhao, J., & Chen, H. (2013). Correlation of porous structure, mass transfer and enzymatic hydrolysis of steam exploded corn stover. Chemical Engineering Science, 104, 1036–1044.

    Article  Google Scholar 

  160. Zhao, X., Cheng, K., & Liu, D. (2009b). Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Applied Microbiology and Biotechnology, 82(5), 815–827.

    Article  Google Scholar 

  161. Zhao, X., Li, S., Wu, R., & Liu, D. (2017). Organosolv fractionating pre-treatment of lignocellulosic biomass for efficient enzymatic saccharification: Chemistry, kinetics, and substrate structures. Biofuels, Bioproducts and Biorefining, 11(3), 567–590.

    Article  Google Scholar 

  162. Zhao, X., & Liu, D. (2011). Fractionating pretreatment of sugarcane bagasse for increasing the enzymatic digestibility of cellulose. Sheng wu gong cheng xue bao= Chin J Biotechnol, 27(3), 384–392.

    Google Scholar 

  163. Zhao, X., & Liu, D. (2012). Fractionating pretreatment of sugarcane bagasse by aqueous formic acid with direct recycle of spent liquor to increase cellulose digestibility–the Formiline process. Bioresource Technology, 117, 25–32.

    Article  Google Scholar 

  164. Zhao, X., Zhang, L., & Liu, D. (2008). Comparative study on chemical pretreatment methods for improving enzymatic digestibility of crofton weed stem. Bioresource Technology, 99(9), 3729–3736.

    Article  Google Scholar 

  165. Zhao, X., Zhang, L., & Liu, D. (2010). Pretreatment of Siam weed stem by several chemical methods for increasing the enzymatic digestibility. Biotechnology Journal, 5(5), 493–504.

    Article  Google Scholar 

  166. Zhao, X., Zhang, L., & Liu, D. (2012). Biomass recalcitrance. Part I: The chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels, Bioproducts and Biorefining, 6(4), 465–482.

    Article  Google Scholar 

  167. Zhao, X., Wang, L., & Liu, D. (2007). Effect of several factors on peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis. Journal of Chemical Technology and Biotechnology, 82(12), 1115–1121.

    Article  Google Scholar 

  168. Zhao, Z., Chen, X., Ali, M. F., Abdeltawab, A. A., Yakout, S. M., & Yu, G. (2018). Pretreatment of wheat straw using basic ethanolamine-based deep eutectic solvents for improving enzymatic hydrolysis. Bioresource Technology, 263, 325–333.

    Article  Google Scholar 

  169. Zheng, Y., Shi, J., Tu, M., & Cheng, Y.-S. (2017). Principles and development of lignocellulosic biomass pretreatment for biofuels. In Advances in Bioenergy (pp. 1–68).

    Google Scholar 

  170. Zhou, Z., Lei, F., Li, P., & Jiang, J. (2018). Lignocellulosic biomass to biofuels and biochemicals: A comprehensive review with a focus on ethanol organosolv pretreatment technology. Biotechnology and Bioengineering, 115(11), 2683–2702.

    Article  Google Scholar 

  171. Zhou, Z., Xue, W., Lei, F., Cheng, Y., Jiang, J., & Sun, D. (2016). Kraft GL-ethanol pretreatment on sugarcane bagasse for effective enzymatic hydrolysis. Industrial Crops and Products, 90, 100–109.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key R & D Program of China (2018YFA0902200) and National Natural Science Foundation of China (No. 21878176; 21808123).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuebing Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, Z., Liu, D., Zhao, X. (2021). Deconstruction of Lignocellulose Recalcitrance by Organosolv Fractionating Pretreatment for Enzymatic Hydrolysis. In: Liu, ZH., Ragauskas, A. (eds) Emerging Technologies for Biorefineries, Biofuels, and Value-Added Commodities. Springer, Cham. https://doi.org/10.1007/978-3-030-65584-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65584-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65583-9

  • Online ISBN: 978-3-030-65584-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics