Skip to main content

Site-Specific Quality Assessment of Trabecular Bone Using Highly Nonlinear Solitary Waves

  • Conference paper
  • First Online:
European Workshop on Structural Health Monitoring (EWSHM 2020)

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 127))

Included in the following conference series:

Abstract

We present a numerical study of highly nonlinear solitary wave interaction with adjacent bone microstructures towards the development of a novel diagnostic scheme for site-specific bone quality assessment. High-resolution finite-element models of the trabecular bone microstructures in the femoral head are generated using a topology optimization-based bone microstructure reconstruction scheme. Using the finite-element models, a hybrid finite-element/discrete-element method is developed to examine the characteristic features of the reflected highly nonlinear solitary waves in a granular chain with adjacent damaged bone microstructure models for the prediction of partial fracture due to the development of osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chang, G., Honig, S., Brown, R., Deniz, C.M., Egol, K.A., Babb, J.S., Regatte, R.R., Rajapakse, C.S.: Finite element analysis applied to 3-T MR imaging of proximal femur microarchitecture: lower bone strength in patients with fragility fractures compared with control objects. Radiology 272, 464–474 (2014)

    Article  Google Scholar 

  2. Krug, R., Burghardt, A.J., Majumdar, S., Link, T.M.: High-resolution imaging techniques for the assessment of osteoporosis. Radiol. Clin. 48, 601–621 (2010)

    Article  Google Scholar 

  3. Goldstein, S.A., Goulet, R., McCubbrey, D.: Measurement and significance of three-dimensional architecture to the mechanical integrity of trabecular bone. Calcif. Tissue Int. 53, S127–S133 (1993)

    Article  Google Scholar 

  4. Goulet, R., Goldstein, S.A., Ciarelli, M.J., Kuhn, J.L., Brown, M., Feldkamp, L.: The relationship between the structural and orthogonal compressive properties of trabecular bone. J. Biomech. 27, 375–389 (1994)

    Article  Google Scholar 

  5. Daraio, C., Nesterenko, V.F., Herbold, E.B., Jin, S.: Strongly nonlinear waves in a chain of Teflon beads. Phys. Rev. E 72, 016603 (2005)

    Article  Google Scholar 

  6. Yang, J., Silvestro, C., Khatri, D., De Nardo, L., Daraio, C.: Interaction of highly nonlinear solitary waves with linear elastic media. Phys. Rev. E 83, 046606 (2011)

    Article  Google Scholar 

  7. Coste, C., Falcon, E., Fauve, S.: Solitary waves in a chain of beads under Hertz contact. Phys. Rev. E 56, 6104–6117 (1997)

    Article  Google Scholar 

  8. Daraio, C., Nesterenko, V.F., Herbold, E.B., Jin, S.: Tunability of solitary wave properties in one-dimensional strongly nonlinear phononic crystals. Phys. Rev. E 73, 026610 (2006)

    Article  Google Scholar 

  9. Job, S., Melo, F., Sokolow, A., Sen, S.: Solitary wave trains in granular chains: experiments, theory and simulations. Granular Matter 10, 13–20 (2007)

    Article  Google Scholar 

  10. Nesterenko, V.F.: Dynamics of Heterogenous Materials. Springer, New York (2001)

    Book  Google Scholar 

  11. Rosas, A., Lindenberg, K.: Pulse propagation in granular chains. Phys. Rep. 735, 1–37 (2018)

    Article  MathSciNet  Google Scholar 

  12. Kim, E., Yang, J.: Review: wave propagation in granular metamaterials. Funct. Compos. Struct. 1, 012002 (2019)

    Article  Google Scholar 

  13. Job, S., Melo, F., Sokolow, A., Sen, S.: How Hertzian solitary waves interact with boundaries in a 1D granular medium. Phys. Rev. Lett. 94, 178002 (2005)

    Article  Google Scholar 

  14. Cai, L., Rizzo, P., Al-Nazer, L.: On the coupling mechanism between nonlinear solitary waves and slender beams. Int. J. Solids Struct. 50, 4173–4183 (2013)

    Article  Google Scholar 

  15. Ni, X., Rizzo, P., Yang, J., Khatri, D., Daraio, C.: Monitoring the hydration of cement by means of highly nonlinear solitary waves. NDT E Int. 52, 76–85 (2012)

    Article  Google Scholar 

  16. Schiffer, A., Kim, T.-Y.: Modelling of the interaction between nonlinear solitary waves and composite beams. Int. J. Mech. Sci. 151, 181–191 (2019)

    Article  Google Scholar 

  17. Schiffer, A., Alia, R.A., Cantwell, W.J., Lee, D., Kim, E., Kim, T.-Y.: Elastic interaction between nonlinear solitary waves in granular chains and composite beams: Experiments and modelling. Int. J. Mech. Sci. 170, 105350 (2020)

    Article  Google Scholar 

  18. Schiffer, A., Lee, D., Kim, E., Kim, T.-Y.: Interaction of highly nonlinear solitary waves with rigid polyurethane foams. Int. J. Solids Struct. 152–153, 39–50 (2018)

    Article  Google Scholar 

  19. Yang, J., Khatri, D., Anzel, P., Daraio, C.: Interaction of highly nonlinear solitary waves with thin plates. Int. J. Solids Struct. 49, 1463–1471 (2012)

    Article  Google Scholar 

  20. Kim, E., Restuccia, F., Yang, J., Daraio, C.: Solitary wave-based delamination detection in composite plates using a combined granular crystal sensor and actuator. Smart Mater. Struct. 24, 125004 (2015)

    Article  Google Scholar 

  21. Schiffer, A., Alkhaja, A.I., Yang, J., Esfahani, E.N., Kim, T.-Y.: Interaction of highly nonlinear solitary waves with elastic solids containing a spherical void. Int. J. Solids Struct. 118–119, 204–212 (2017)

    Article  Google Scholar 

  22. Singhal, T., Kim, E., Kim, T.-Y., Yang, J.: Weak bond detection in composites using highly nonlinear solitary waves. Smart Mater. Struct. 26(5), 055011 (2017)

    Article  Google Scholar 

  23. Yang, J., Restuccia, F., Daraio, C.: Highly nonlinear granular crystal sensor and actuator for delamination detection in composite structures. In: Chang, F.K. (ed.) International Workshop on Structural Health Monitoring, Stanford, CA, pp. 1424–1433 (2011)

    Google Scholar 

  24. Nasrollahi, A., Lucht, R., Rizzo, P.: Solitary waves to assess the internal pressure and the rubber degradation of tennis balls. Exp. Mech. 59, 65–77 (2019)

    Article  Google Scholar 

  25. Ni, X., Rizzo, P.: Highly nonlinear solitary waves for the inspection of adhesive joints. Exp. Mech. 52, 1493–1501 (2012)

    Article  Google Scholar 

  26. Yang, J., Sangiorgio, S.N., Borkowski, S.L., Silvestro, C., De Nardo, L., Daraio, C., Ebramzadeh, E.: Site-specific quantification of bone quality using highly nonlinear solitary waves. J. Biomech. Eng. 134, 101001 (2012)

    Article  Google Scholar 

  27. Yang, J., Silvestro, C., Sangiorgio, S.N., Borkowski, S.L., Ebramzadeh, E., De Nardo, L., Daraio, C.: Nondestructive evaluation of orthopaedic implant stability in THA using highly nonlinear solitary waves. Smart Mater. Struct. 21, 012002 (2012)

    Article  Google Scholar 

  28. Yoon, S., Schiffer, A., Kim, J.J., Jang, I.G., Lee, S., Kim, T.-Y.: Numerical predictions of the interaction between highly nonlinear solitary waves and the microstructure of trabecular bone in the femoral head. J. Mech. Behav. Biomed. Mater. 109, 103805 (2020)

    Article  Google Scholar 

  29. Kim, J.J., Jang, I.G.: Image resolution enhancement for healthy weight-bearing bones based on topology optimization. J. Biomech. 49, 3035–3040 (2016)

    Article  Google Scholar 

  30. Kim, J.J., Nam, J., Jang, I.G.: Computational study of estimating 3D trabecular bone microstructure for the volume of interest from CT scan data. Int. J. Numer. Methods Biomed. Eng. 34(4), e2950 (2018)

    Article  MathSciNet  Google Scholar 

  31. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Book  Google Scholar 

  32. Hilber, H.M., Hughes, T.J.R., Taylor, R.L.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq. Eng. Struct. Dyn. 5, 283–292 (1977)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully appreciate the financial support from the Abu Dhabi Department of Education and Knowledge (ADEK) through the Award of Research Excellence (AARE) 2017 (No. AARE17-069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Yeon Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, TY., Yoon, S., Schiffer, A., Jang, I.G., Lee, S. (2021). Site-Specific Quality Assessment of Trabecular Bone Using Highly Nonlinear Solitary Waves. In: Rizzo, P., Milazzo, A. (eds) European Workshop on Structural Health Monitoring. EWSHM 2020. Lecture Notes in Civil Engineering, vol 127. Springer, Cham. https://doi.org/10.1007/978-3-030-64594-6_86

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64594-6_86

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64593-9

  • Online ISBN: 978-3-030-64594-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics