Skip to main content

Lysophospholipids in Lung Inflammatory Diseases

  • Chapter
  • First Online:
Lung Inflammation in Health and Disease, Volume I

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1303))

Abstract

The lysophospholipids (LPLs) belong to a group of bioactive lipids that play pivotal roles in several physiological and pathological processes. LPLs are derivatives of phospholipids and consist of a single hydrophobic fatty acid chain, a hydrophilic head, and a phosphate group with or without a large molecule attached. Among the LPLs, lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are the simplest, and have been shown to be involved in lung inflammatory symptoms and diseases such as acute lung injury, asthma, and chronic obstructive pulmonary diseases. G protein–coupled receptors (GPCRs) mediate LPA and S1P signaling. In this chapter, we will discuss on the role of LPA, S1P, their metabolizing enzymes, inhibitors or agonists of their receptors, and their GPCR-mediated signaling in lung inflammatory symptoms and diseases, focusing specially on acute respiratory distress syndrome, asthma, and chronic obstructive pulmonary disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AGK:

Acylglycerol kinase

ALI:

Acute lung injury

ARDS:

Acute respiratory distress syndrome

ASM:

Airway smooth muscle

ATX:

Autotaxin

BALF:

Bronchoalveolar lavage fluid

COPD:

Chronic obstructive pulmonary disease

DGK:

Diacylglycerol kinase

DMS:

Dimethylsphingosine

DTD:

DL-threo-Dihydrosphingosine

ECMO:

Extracorporeal membrane oxygenation

Edg:

Endothelial cell differentiation gene

EMT:

Epithelial–mesenchymal transition

ENPP2:

Ectonucleotide pyrophosphatase/phosphodiesterases family member 2

G3P:

Glycerol 3-phosphate

GPAT:

Glycerol 3-phosphate acyltransferase

GPCR:

G protein–coupled receptor

HLMVEC:

Human lung microvascular cell

HPAEC:

Human pulmonary arterial endothelial cell

IP:

Intraperitoneal

IT:

Intratracheal

IV:

Intravenous

LPA:

Lysophosphatidic acid

LPAATs:

LPA acyltransferases

LPL:

Lysophospholipid

LPP:

Lipid phosphatase

LPS:

Lipopolysaccharide

MAG:

Monoacylglycerol

MLC:

Myosin light chain

NOX2:

NADPH oxidase type 2

ORMDL3:

OR-like protein isoform 3

PA:

Phosphatidic acid

PC:

Phosphatidylcholine

PG:

Phosphatidylglycerol

PLA:

Phospholipase A

PLC:

Phospholipase C

PLD:

Phospholipase D

PS:

Phosphatidylserine

S1P:

Sphingosine-1-phosphate

SphK:

Sphingosine kinase

Spns2:

Spinster homolog 2

SPPase:

S1P phosphatase

References

  1. Benesch MGK, Tang X, Brindley DN. Autotaxin and breast Cancer: towards overcoming treatment barriers and sequelae. Cancers (Basel). 2020;12(2)

    Google Scholar 

  2. Cartier A, Hla T. Sphingosine 1-phosphate: lipid signaling in pathology and therapy. Science. 2019;366(6463)

    Google Scholar 

  3. Ebenezer DL, et al. S1P and plasmalogen derived fatty aldehydes in cellular signaling and functions. Biochim Biophys Acta Mol Cell Biol Lipids. 1865;2020(7):158681.

    Article  CAS  Google Scholar 

  4. Fu P, et al. Nuclear lipid mediators: role of nuclear sphingolipids and sphingosine-1-phosphate signaling in epigenetic regulation of inflammation and gene expression. J Cell Biochem. 2018;119(8):6337–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Singh SK, Spiegel S. Sphingosine-1-phosphate signaling: a novel target for simultaneous adjuvant treatment of triple negative breast cancer and chemotherapy-induced neuropathic pain. Adv Biol Regul. 2020;75:100670.

    Article  PubMed  CAS  Google Scholar 

  6. Zhao Y, Natarajan V. Lysophosphatidic acid (LPA) and its receptors: role in airway inflammation and remodeling. Biochim Biophys Acta. 2013;1831(1):86–92.

    Article  PubMed  CAS  Google Scholar 

  7. Pyne S, Pyne NJ. New perspectives on the role of sphingosine 1-phosphate in cancer. Handb Exp Pharmacol. 2013;216:55–71.

    Article  CAS  Google Scholar 

  8. Kihara Y, Mizuno H, Chun J. Lysophospholipid receptors in drug discovery. Exp Cell Res. 2015;333(2):171–7.

    Article  PubMed  CAS  Google Scholar 

  9. Pyne NJ, et al. Role of sphingosine 1-phosphate receptors, sphingosine kinases and sphingosine in cancer and inflammation. Adv Biol Regul. 2016;60:151–9.

    Article  PubMed  CAS  Google Scholar 

  10. Zhang C, et al. Lysophosphatidic acid induces neointima formation through PPARgamma activation. J Exp Med. 2004;199(6):763–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Levitzky MG. Pulmonary physiology. 8th ed. New York: McGraw-Hill; 2013.

    Google Scholar 

  12. Zhang C, Myers JL. Atlas of lung pathology. New York: Springer; 2018.

    Book  Google Scholar 

  13. Hiramatsu T, et al. Biochemical and molecular characterization of two phosphatidic acid-selective phospholipase A1s, mPA-PLA1alpha and mPA-PLA1beta. J Biol Chem. 2003;278(49):49438–47.

    Article  PubMed  CAS  Google Scholar 

  14. Sonoda H, et al. A novel phosphatidic acid-selective phospholipase A1 that produces lysophosphatidic acid. J Biol Chem. 2002;277(37):34254–63.

    Article  PubMed  CAS  Google Scholar 

  15. Luquain C, et al. Role of phospholipase D in agonist-stimulated lysophosphatidic acid synthesis by ovarian cancer cells. J Lipid Res. 2003;44(10):1963–75.

    Article  PubMed  CAS  Google Scholar 

  16. Bektas M, et al. A novel acylglycerol kinase that produces lysophosphatidic acid modulates cross talk with EGFR in prostate cancer cells. J Cell Biol. 2005;169(5):801–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Bertolesi GE, et al. Identification and expression analysis of GPAT family genes during early development of Xenopus laevis. Gene Expr Patterns. 2012;12(7–8):219–27.

    Article  PubMed  CAS  Google Scholar 

  18. Chen X, et al. Sn-Glycerol-3-phosphate acyltransferases in plants. Plant Signal Behav. 2011;6(11):1695–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Xie Y, Meier KE. Lysophospholipase D and its role in LPA production. Cell Signal. 2004;16(9):975–81.

    Article  PubMed  CAS  Google Scholar 

  20. Yuelling LM, Fuss B. Autotaxin (ATX): a multi-functional and multi-modular protein possessing enzymatic lysoPLD activity and matricellular properties. Biochim Biophys Acta. 2008;1781(9):525–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. van Meeteren LA, et al. Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development. Mol Cell Biol. 2006;26(13):5015–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Inoue M, et al. Autotaxin, a synthetic enzyme of lysophosphatidic acid (LPA), mediates the induction of nerve-injured neuropathic pain. Mol Pain. 2008;4:6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Umezu-Goto M, et al. Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. J Cell Biol. 2002;158(2):227–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Tang X, Benesch MGK, Brindley DN. Role of the autotaxin-lysophosphatidate axis in the development of resistance to cancer therapy. Biochim Biophys Acta Mol Cell Biol Lipids. 1865;2020(8):158716.

    Article  CAS  Google Scholar 

  25. Onono FO, Morris AJ. Phospholipase D and choline metabolism. Handb Exp Pharmacol. 2020;259:205–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Neidlinger NA, et al. Hydrolysis of phosphatidylserine-exposing red blood cells by secretory phospholipase A2 generates lysophosphatidic acid and results in vascular dysfunction. J Biol Chem. 2006;281(2):775–81.

    Article  PubMed  CAS  Google Scholar 

  27. West J, et al. Cloning and expression of two human lysophosphatidic acid acyltransferase cDNAs that enhance cytokine-induced signaling responses in cells. DNA Cell Biol. 1997;16(6):691–701.

    Article  PubMed  CAS  Google Scholar 

  28. Leung DW. The structure and functions of human lysophosphatidic acid acyltransferases. Front Biosci. 2001;6:D944–53.

    Article  PubMed  CAS  Google Scholar 

  29. Zhao Y, et al. Lipid phosphate phosphatase-1 regulates lysophosphatidic acid-induced calcium release, NF-kappaB activation and interleukin-8 secretion in human bronchial epithelial cells. Biochem J. 2005;385(Pt 2):493–502.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Tang X, Benesch MG, Brindley DN. Lipid phosphate phosphatases and their roles in mammalian physiology and pathology. J Lipid Res. 2015;56(11):2048–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Pyne S, et al. Lipid phosphate phosphatases and lipid phosphate signalling. Biochem Soc Trans. 2005;33(Pt 6):1370–4.

    Article  PubMed  CAS  Google Scholar 

  32. Liu H, et al. Sphingosine kinases: a novel family of lipid kinases. Prog Nucleic Acid Res Mol Biol. 2002;71:493–511.

    Article  PubMed  CAS  Google Scholar 

  33. Magli E, et al. Design of Sphingosine Kinases Inhibitors: challenges and recent developments. Curr Pharm Des. 2019;25(9):956–68.

    Article  PubMed  CAS  Google Scholar 

  34. Igarashi N, et al. Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis. J Biol Chem. 2003;278(47):46832–9.

    Article  PubMed  CAS  Google Scholar 

  35. Hait NC, et al. Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science. 2009;325(5945):1254–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Strub GM, et al. Sphingosine-1-phosphate produced by sphingosine kinase 2 in mitochondria interacts with prohibitin 2 to regulate complex IV assembly and respiration. FASEB J. 2011;25(2):600–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Lai WQ, et al. The role of sphingosine kinase in a murine model of allergic asthma. J Immunol. 2008;180(6):4323–9.

    Article  PubMed  CAS  Google Scholar 

  38. Wadgaonkar R, et al. Differential regulation of sphingosine kinases 1 and 2 in lung injury. Am J Physiol Lung Cell Mol Physiol. 2009;296(4):L603–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Nishi T, et al. Molecular and physiological functions of sphingosine 1-phosphate transporters. Biochim Biophys Acta. 2014;1841(5):759–65.

    Article  PubMed  CAS  Google Scholar 

  40. Liu X, Zhang QH, Yi GH. Regulation of metabolism and transport of sphingosine-1-phosphate in mammalian cells. Mol Cell Biochem. 2012;363(1–2):21–33.

    Article  PubMed  CAS  Google Scholar 

  41. Kim RH, et al. Export and functions of sphingosine-1-phosphate. Biochim Biophys Acta. 2009;1791(7):692–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Kobayashi N, et al. MFSD2B is a sphingosine 1-phosphate transporter in erythroid cells. Sci Rep. 2018;8(1):4969.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Nijnik A, et al. The role of sphingosine-1-phosphate transporter Spns2 in immune system function. J Immunol. 2012;189(1):102–11.

    Article  PubMed  CAS  Google Scholar 

  44. Bandhuvula P, Fyrst H, Saba JD. A rapid fluorescence assay for sphingosine-1-phosphate lyase enzyme activity. J Lipid Res. 2007;48(12):2769–78.

    Article  PubMed  CAS  Google Scholar 

  45. Zhao Y, et al. Protection of LPS-induced murine acute lung injury by sphingosine-1-phosphate lyase suppression. Am J Respir Cell Mol Biol. 2011;45(2):426–35.

    Article  PubMed  CAS  Google Scholar 

  46. Ito K, et al. Lack of sphingosine 1-phosphate-degrading enzymes in erythrocytes. Biochem Biophys Res Commun. 2007;357(1):212–7.

    Article  PubMed  CAS  Google Scholar 

  47. Allende ML, et al. Sphingosine-1-phosphate phosphatase 1 regulates keratinocyte differentiation and epidermal homeostasis. J Biol Chem. 2013;288(25):18381–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Taguchi Y, et al. Sphingosine-1-phosphate phosphatase 2 regulates pancreatic islet beta-cell endoplasmic reticulum stress and proliferation. J Biol Chem. 2016;291(23):12029–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Mandala SM. Sphingosine-1-phosphate phosphatases. Prostaglandins Other Lipid Mediat. 2001;64(1–4):143–56.

    Article  PubMed  CAS  Google Scholar 

  50. Toews ML, et al. Lysophosphatidic acid in airway function and disease. Biochim Biophys Acta. 2002;1582(1–3):240–50.

    Article  PubMed  CAS  Google Scholar 

  51. Sharma S, et al. Fingolimod (FTY720): first approved oral therapy for multiple sclerosis. J Pharmacol Pharmacother. 2011;2(1):49–51.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Billich A, et al. Phosphorylation of the immunomodulatory drug FTY720 by sphingosine kinases. J Biol Chem. 2003;278(48):47408–15.

    Article  PubMed  CAS  Google Scholar 

  53. Chiba K, Adachi K. Sphingosine 1-phosphate receptor 1 as a useful target for treatment of multiple sclerosis. Pharmaceuticals (Basel). 2012;5(5):514–28.

    Article  CAS  Google Scholar 

  54. Benesch MGK, et al. Lysophosphatidate signaling: the tumor microenvironment’s new nemesis. Trends Cancer. 2017;3(11):748–52.

    Article  PubMed  CAS  Google Scholar 

  55. Patmanathan SN, et al. Mechanisms of sphingosine 1-phosphate receptor signalling in cancer. Cell Signal. 2017;34:66–75.

    Article  PubMed  CAS  Google Scholar 

  56. Rancoule C, et al. Lysophosphatidic acid (LPA) as a pro-fibrotic and pro-oncogenic factor: a pivotal target to improve the radiotherapy therapeutic index. Oncotarget. 2017;8(26):43543–54.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Diab KJ, et al. Stimulation of sphingosine 1-phosphate signaling as an alveolar cell survival strategy in emphysema. Am J Respir Crit Care Med. 2010;181(4):344–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Goetzl EJ, Kong Y, Mei B. Lysophosphatidic acid and sphingosine 1-phosphate protection of T cells from apoptosis in association with suppression of Bax. J Immunol. 1999;162(4):2049–56.

    PubMed  CAS  Google Scholar 

  59. He DH, et al. Lysophosphatidic acid-induced transactivation of epidermal growth factor receptor regulates cyclo-oxygenase-2 expression and prostaglandin E-2 release via C/EBP beta in human bronchial epithelial cells. Biochem J. 2008;412:153–62.

    Article  PubMed  CAS  Google Scholar 

  60. Wang LX, et al. Involvement of phospholipase D2 in lysophosphatidate-induced transactivation of platelet-derived growth factor receptor-beta in human bronchial epithelial cells. J Biol Chem. 2003;278(41):39931–40.

    Article  PubMed  CAS  Google Scholar 

  61. Zhang Q, Lenardo MJ, Baltimore D. 30 years of NF-kappaB: a blossoming of relevance to human pathobiology. Cell. 2017;168(1–2):37–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Cummings R, et al. Protein kinase C delta mediates lysophosphatidic acid-induced NF-kappa B activation and interleukin-8 secretion in human bronchial epithelial cells. J Biol Chem. 2004;279(39):41085–94.

    Article  PubMed  CAS  Google Scholar 

  63. Siehler S, et al. Sphingosine 1-phosphate activates nuclear factor-kappa B through Edg receptors. Activation through Edg-3 and Edg-5, but not Edg-1, in human embryonic kidney 293 cells. J Biol Chem. 2001;276(52):48733–9.

    Article  PubMed  CAS  Google Scholar 

  64. Ye X, et al. Lysophosphatidic acid as a novel cell survival/apoptotic factor. Biochim Biophys Acta. 2002;1585(2–3):108–13.

    Article  PubMed  CAS  Google Scholar 

  65. Zhao YT, Natarajan V. Lysophosphatidic acid signaling in airway epithelium: role in airway inflammation and remodeling. Cell Signal. 2009;21(3):367–77.

    Article  PubMed  CAS  Google Scholar 

  66. Zhao YT, Natarajan V. Lysophosphatidic acid (LPA) and its receptors: role in airway inflammation and remodeling. BBA-Mol Cell Biol L. 2013;1831(1):86–92.

    CAS  Google Scholar 

  67. Pyne S, Pyne NJ. Sphingosine 1-phosphate signalling in mammalian cells. Biochem J. 2000;349(Pt 2):385–402.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Takuwa Y. Subtype-specific differential regulation of Rho family G proteins and cell migration by the Edg family sphingosine-1-phosphate receptors. Biochim Biophys Acta. 2002;1582(1–3):112–20.

    Article  PubMed  CAS  Google Scholar 

  69. Wang L, Dudek SM. Regulation of vascular permeability by sphingosine 1-phosphate. Microvasc Res. 2009;77(1):39–45.

    Article  PubMed  CAS  Google Scholar 

  70. van Leeuwen FN, et al. Lysophosphatidic acid: mitogen and motility factor. Biochem Soc Trans. 2003;31(Pt 6):1209–12.

    Article  PubMed  Google Scholar 

  71. Shikata Y, et al. Involvement of site-specific FAK phosphorylation in sphingosine-1 phosphate- and thrombin-induced focal adhesion remodeling: role of Src and GIT. FASEB J. 2003;17(15):2240–9.

    Article  PubMed  CAS  Google Scholar 

  72. Usatyuk PV, et al. Photolysis of caged sphingosine-1-phosphate induces barrier enhancement and intracellular activation of lung endothelial cell signaling pathways. Am J Physiol Lung Cell Mol Physiol. 2011;300(6):L840–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. van Nieuw Amerongen GP, Vermeer MA, van Hinsbergh VW. Role of RhoA and Rho kinase in lysophosphatidic acid-induced endothelial barrier dysfunction. Arterioscler Thromb Vasc Biol. 2000;20(12):E127–33.

    PubMed  Google Scholar 

  74. Cai J, et al. AM966, an antagonist of lysophosphatidic acid receptor 1, Increases lung microvascular endothelial permeability through activation of Rho signaling pathway and phosphorylation of VE-cadherin. Mediat Inflamm. 2017;2017:6893560.

    Article  CAS  Google Scholar 

  75. He DH, et al. Lysophosphatidic acid enhances pulmonary epithelial barrier integrity and protects endotoxin-induced epithelial barrier disruption and lung injury. J Biol Chem. 2009;284(36):24123–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Zhao J, et al. Destabilization of lysophosphatidic acid receptor 1 reduces cytokine release and protects against lung injury. EBioMedicine. 2016;10:195–203.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Diamond M, et al. Acute Respiratory Distress Syndrome (ARDS). In StatPearls. 2020: Treasure Island (FL).

    Google Scholar 

  78. Mouratis MA, et al. Autotaxin and endotoxin-induced acute lung injury. PLoS One. 2015;10(7):e0133619.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Zhao J, et al. Lysophosphatidic acid receptor 1 modulates lipopolysaccharide-induced inflammation in alveolar epithelial cells and murine lungs. Am J Phys Lung Cell Mol Phys. 2011;301(4):L547–56.

    CAS  Google Scholar 

  80. Tager AM, et al. The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak. Nat Med. 2008;14(1):45–54.

    Article  PubMed  CAS  Google Scholar 

  81. Shim GH, et al. Expression of autotaxin and lysophosphatidic acid receptors 1 and 3 in the developing rat lung and in response to hyperoxia. Free Radic Res. 2015;49(11):1362–70.

    Article  PubMed  CAS  Google Scholar 

  82. Nowak-Machen M, et al. Lysophosphatidic acid generation by pulmonary NKT cell ENPP-2/autotaxin exacerbates hyperoxic lung injury. Purinergic Signal. 2015;11(4):455–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Zhao J, et al. Autotaxin induces lung epithelial cell migration through lysoPLD activity-dependent and independent pathways. Biochem J. 2011;439:45–55.

    Google Scholar 

  84. Black KE, et al. Autotaxin activity increases locally following lung injury, but is not required for pulmonary lysophosphatidic acid production or fibrosis. FASEB J. 2016;30(6):2435–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Munoz NM, et al. Secretory group V phospholipase A2 regulates acute lung injury and neutrophilic inflammation caused by LPS in mice. Am J Physiol Lung Cell Mol Physiol. 2009;296(6):L879–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Zhao YT, et al. Role of lysophosphatidic acid receptor LPA(2) in the development of allergic airway inflammation in a murine model of asthma. Respir Res. 2009;10

    Google Scholar 

  87. Bae GH, et al. Lysophosphatidic acid protects against acetaminophen-induced acute liver injury. Exp Mol Med. 2017;49(12):e407.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Chen X, et al. Adult lysophosphatidic acid receptor 1-deficient rats with Hyperoxia-induced neonatal chronic lung disease are protected against lipopolysaccharide-induced acute lung injury. Front Physiol. 2017;8:155.

    PubMed  PubMed Central  Google Scholar 

  89. Chen X, et al. Deficiency or inhibition of lysophosphatidic acid receptor 1 protects against hyperoxia-induced lung injury in neonatal rats. Acta Physiol (Oxf). 2016;216(3):358–75.

    Article  CAS  Google Scholar 

  90. Zhao J, et al. SCF E3 ligase F-box protein complex SCFFBXL19 regulates cell migration by mediating Rac1 ubiquitination and degradation. FASEB J. 2013;27(7):2611–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Vazquez-Medina JP, et al. The phospholipase A2 activity of peroxiredoxin 6 modulates NADPH oxidase 2 activation via lysophosphatidic acid receptor signaling in the pulmonary endothelium and alveolar macrophages. FASEB J. 2016;30(8):2885–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Ren Y, et al. Comparing the differential effects of LPA on the barrier function of human pulmonary endothelial cells. Microvasc Res. 2013;85:59–67.

    Article  PubMed  CAS  Google Scholar 

  93. Zhao YT, et al. Protection of LPS-induced murine acute lung injury by Sphingosine-1-phosphate Lyase suppression. Am J Respir Cell Mol Biol. 2011;45(2):426–35.

    Article  PubMed  CAS  Google Scholar 

  94. Wang Y, et al. Upregulation of sphingosine kinase 1 contributes to ventilator-associated lung injury in a two-hit model. Int J Mol Med. 2019;44(6):2077–90.

    PubMed  PubMed Central  CAS  Google Scholar 

  95. Ebenezer DL, et al. Pseudomonas aeruginosa stimulates nuclear sphingosine-1-phosphate generation and epigenetic regulation of lung inflammatory injury. Thorax. 2019;74(6):579–91.

    Article  PubMed  Google Scholar 

  96. Zhao J, et al. Serum sphingosine-1-phosphate levels and Sphingosine-1-phosphate gene polymorphisms in acute respiratory distress syndrome: a multicenter prospective study. J Transl Med. 2020;18(1):156.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Mathew B, et al. Role of sphingolipids in murine radiation-induced lung injury: protection by sphingosine 1-phosphate analogs. FASEB J. 2011;25(10):3388–400.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Suryadevara V, et al. Sphingolipids in ventilator induced lung injury: role of Sphingosine-1-phosphate Lyase. Int J Mol Sci. 2018;19(1)

    Google Scholar 

  99. Viriyavejakul P, Punsawad C. Overexpression of sphingosine Kinase-1 and Sphingosine-1-phosphate Receptor-3 in severe Plasmodium falciparum malaria with pulmonary edema. Biomed Res Int. 2020;2020:3932569.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Wadgaonkar R, et al. Differential regulation of sphingosine kinases 1 and 2 in lung injury. Am J Phys Lung Cell Mol Phys. 2009;296(4):L603–13.

    CAS  Google Scholar 

  101. Gutbier B, et al. Sphingosine kinase 1 regulates inflammation and contributes to acute lung injury in pneumococcal pneumonia via the Sphingosine-1-phosphate receptor 2. Crit Care Med. 2018;46(3):e258–67.

    Article  PubMed  CAS  Google Scholar 

  102. Sammani S, et al. Differential effects of sphingosine 1-phosphate receptors on airway and vascular barrier function in the murine lung. Am J Respir Cell Mol Biol. 2010;43(4):394–402.

    Article  PubMed  CAS  Google Scholar 

  103. McVerry BJ, et al. Sphingosine 1-phosphate reduces vascular leak in murine and canine models of acute lung injury. Am J Respir Crit Care Med. 2004;170(9):987–93.

    Article  PubMed  Google Scholar 

  104. Szczepaniak WS, et al. Sphingosine 1-phosphate rescues canine LPS-induced acute lung injury and alters systemic inflammatory cytokine production in vivo. Transl Res. 2008;152(5):213–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Natarajan V, et al. Sphingosine-1-phosphate, FTY720, and sphingosine-1-phosphate receptors in the pathobiology of acute lung injury. Am J Respir Cell Mol Biol. 2013;49(1):6–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Wang L, et al. Effects of FTY720 on lung injury induced by Hindlimb ischemia reperfusion in rats. Mediat Inflamm. 2017;2017:5301312.

    Google Scholar 

  107. Camp SM, et al. Synthetic analogs of FTY720 [2-amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol] differentially regulate pulmonary vascular permeability in vivo and in vitro. J Pharmacol Exp Ther. 2009;331(1):54–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Wang L, et al. FTY720 (s)-phosphonate preserves sphingosine 1-phosphate receptor 1 expression and exhibits superior barrier protection to FTY720 in acute lung injury. Crit Care Med. 2014;42(3):e189–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Singleton PA, et al. Regulation of sphingosine 1-phosphate-induced endothelial cytoskeletal rearrangement and barrier enhancement by S1P1 receptor, PI3 kinase, Tiam1/Rac1, and alpha-actinin. FASEB J. 2005;19(12):1646–56.

    Article  PubMed  CAS  Google Scholar 

  110. Lin CC, et al. Sphingosine 1-phosphate-induced ICAM-1 expression via NADPH oxidase/ROS-dependent NF-kappaB Cascade on human pulmonary alveolar epithelial cells. Front Pharmacol. 2016;7:80.

    PubMed  PubMed Central  Google Scholar 

  111. Chen LY, et al. Cytosolic phospholipase A2alpha activation induced by S1P is mediated by the S1P3 receptor in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2008;295(2):L326–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Sun X, et al. Sphingosine-1-phosphate receptor-3 is a novel biomarker in acute lung injury. Am J Respir Cell Mol Biol. 2012;47(5):628–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. O’Sullivan MJ, Hirota N, Martin JG. Sphingosine 1-phosphate (S1P) induced interleukin-8 (IL-8) release is mediated by S1P receptor 2 and nuclear factor kappaB in BEAS-2B cells. PLoS One. 2014;9(4):e95566.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Rahaman M, et al. Neutrophil sphingosine 1-phosphate and lysophosphatidic acid receptors in pneumonia. Am J Respir Cell Mol Biol. 2006;34(2):233–41.

    Article  PubMed  CAS  Google Scholar 

  115. Foster PS, et al. Modeling TH 2 responses and airway inflammation to understand fundamental mechanisms regulating the pathogenesis of asthma. Immunol Rev. 2017;278(1):20–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Ray A, et al. Current concepts of severe asthma. J Clin Invest. 2016;126(7):2394–403.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Gauthier M, Ray A, Wenzel SE. Evolving concepts of asthma. Am J Respir Crit Care Med. 2015;192(6):660–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Georas SN, et al. Lysophosphatidic acid is detectable in human bronchoalveolar lavage fluids at baseline and increased after segmental allergen challenge. Clin Exp Allergy. 2007;37(3):311–22.

    Article  PubMed  CAS  Google Scholar 

  119. Park GY, et al. Autotaxin production of lysophosphatidic acid mediates allergic asthmatic inflammation. Am J Respir Crit Care Med. 2013;188(8):928–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Ackerman SJ, et al. Polyunsaturated lysophosphatidic acid as a potential asthma biomarker. Biomark Med. 2016;10(2):123–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Emo J, et al. Lpa2 is a negative regulator of both dendritic cell activation and murine models of allergic lung inflammation. J Immunol. 2012;188(8):3784–90.

    Article  PubMed  CAS  Google Scholar 

  122. Jendzjowsky NG, et al. Preventing acute asthmatic symptoms by targeting a neuronal mechanism involving carotid body lysophosphatidic acid receptors. Nat Commun. 2018;9(1):4030.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Hashimoto T, et al. Role of Rho-associated protein kinase and histamine in lysophosphatidic acid-induced airway hyperresponsiveness in Guinea pigs. Jpn J Pharmacol. 2002;88(3):256–61.

    Article  PubMed  CAS  Google Scholar 

  124. Johnson PR, et al. Airway smooth muscle cell proliferation is increased in asthma. Am J Respir Crit Care Med. 2001;164(3):474–7.

    Article  PubMed  CAS  Google Scholar 

  125. Cerutis DR, et al. Lysophosphatidic acid and EGF stimulate mitogenesis in human airway smooth muscle cells. Am J Phys. 1997;273(1 Pt 1):L10–5.

    CAS  Google Scholar 

  126. Hao F, et al. LPA induces IL-6 secretion from aortic smooth muscle cells via an LPA1-regulated, PKC-dependent, and p38alpha-mediated pathway. Am J Physiol Heart Circ Physiol. 2010;298(3):H974–83.

    Article  PubMed  CAS  Google Scholar 

  127. Chehimi M, Vidal H, Eljaafari A. Pathogenic role of IL-17-producing immune cells in obesity, and related inflammatory diseases. J Clin Med. 2017:6(7).

    Google Scholar 

  128. Rubenfeld J, et al. Lysophosphatidic acid enhances interleukin-13 gene expression and promoter activity in T cells. Am J Physiol Lung Cell Mol Physiol. 2006;290(1):L66–74.

    Article  PubMed  CAS  Google Scholar 

  129. Zheng Y, Kong Y, Goetzl EJ. Lysophosphatidic acid receptor-selective effects on Jurkat T cell migration through a Matrigel model basement membrane. J Immunol. 2001;166(4):2317–22.

    Article  PubMed  CAS  Google Scholar 

  130. Zhao J, et al. Lysophosphatidic acid increases soluble ST2 expression in mouse lung and human bronchial epithelial cells. Cell Signal. 2012;24(1):77–85.

    Article  PubMed  CAS  Google Scholar 

  131. Kim SJ, Moon HG, Park GY. The roles of autotaxin/lysophosphatidic acid in immune regulation and asthma. Biochim Biophys Acta Mol Cell Biol Lipids. 1865;2020(5):158641.

    Article  CAS  Google Scholar 

  132. Lundequist A, Boyce JA. LPA5 is abundantly expressed by human mast cells and important for lysophosphatidic acid induced MIP-1beta release. PLoS One. 2011;6(3):e18192.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Price MM, et al. A specific sphingosine kinase 1 inhibitor attenuates airway hyperresponsiveness and inflammation in a mast cell-dependent murine model of allergic asthma. J Allergy Clin Immunol. 2013;131(2):501–11. e1

    Article  PubMed  CAS  Google Scholar 

  134. Roviezzo F, et al. Systemic administration of sphingosine-1-phosphate increases bronchial hyperresponsiveness in the mouse. Am J Respir Cell Mol Biol. 2010;42(5):572–7.

    Article  PubMed  CAS  Google Scholar 

  135. Roviezzo F, et al. Sphingosine-1-phosphate/sphingosine kinase pathway is involved in mouse airway hyperresponsiveness. Am J Respir Cell Mol Biol. 2007;36(6):757–62.

    Article  PubMed  CAS  Google Scholar 

  136. Park SJ, Im DS. Blockage of sphingosine-1-phosphate receptor 2 attenuates allergic asthma in mice. Br J Pharmacol. 2019;176(7):938–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Sun X, et al. Functional variants of the sphingosine-1-phosphate receptor 1 gene associate with asthma susceptibility. J Allergy Clin Immunol. 2010;126(2):241–9, 249 e1–3.

    Google Scholar 

  138. Karmouty-Quintana H, et al. Treatment with a sphingosine-1-phosphate analog inhibits airway remodeling following repeated allergen exposure. Am J Physiol Lung Cell Mol Physiol. 2012;302(8):L736–45.

    Article  PubMed  CAS  Google Scholar 

  139. Oyeniran C, et al. Aberrant ORM (yeast)-like protein isoform 3 (ORMDL3) expression dysregulates ceramide homeostasis in cells and ceramide exacerbates allergic asthma in mice. J Allergy Clin Immunol. 2015;136(4):1035–46. e6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Ble FX, et al. Activation of the lung S1P(1) receptor reduces allergen-induced plasma leakage in mice. Br J Pharmacol. 2009;158(5):1295–301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Rabe KF, Watz H. Chronic obstructive pulmonary disease. Lancet. 2017;389(10082):1931–40.

    Article  PubMed  Google Scholar 

  142. Ren X, et al. LC-MS based metabolomics identification of novel biomarkers of tobacco smoke-induced chronic bronchitis. Biomed Chromatogr. 2016;30(1):68–74.

    Article  PubMed  CAS  Google Scholar 

  143. Naz S, et al. Metabolomics analysis identifies sex-associated metabotypes of oxidative stress and the autotaxin-lysoPA axis in COPD. Eur Respir J. 2017:49(6).

    Google Scholar 

  144. Blanque R, et al. Pharmacological profile and efficacy of GLPG1690, a novel ATX inhibitor for COPD treatment. Eur Respir J. 2015;46:PA2129.

    Google Scholar 

  145. Funke M, et al. Lysophosphatidic acid signaling through the lysophosphatidic Acid-1 receptor is required for Alveolarization. Am J Respir Cell Mol Biol. 2016;55(1):105–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. De Cunto G, et al. Functional contribution of sphingosine-1-phosphate to airway pathology in cigarette smoke-exposed mice. Br J Pharmacol. 2020;177(2):267–81.

    Article  PubMed  CAS  Google Scholar 

  147. Koike K, et al. Bioactive sphingolipids in the pathogenesis of chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2018;15(Suppl 4):S249–52.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Barnawi J, et al. Potential link between the Sphingosine-1-phosphate (S1P) system and defective alveolar macrophage phagocytic function in chronic obstructive pulmonary disease (COPD). PLoS One. 2015;10(10):e0122771.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Tran HB, et al. Cigarette smoke inhibits efferocytosis via deregulation of sphingosine kinase signaling: reversal with exogenous S1P and the S1P analogue FTY720. J Leukoc Biol. 2016;100(1):195–202.

    Article  PubMed  CAS  Google Scholar 

  150. Schweitzer KS, et al. Endothelial disruptive proinflammatory effects of nicotine and e-cigarette vapor exposures. Am J Physiol Lung Cell Mol Physiol. 2015;309(2):L175–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Pyne NJ, Pyne S. Sphingosine 1-phosphate and cancer. Nat Rev Cancer. 2010;10(7):489–503.

    Article  PubMed  CAS  Google Scholar 

  152. Rodriguez YI, et al. Sphingosine-1 phosphate: a new modulator of immune plasticity in the tumor microenvironment. Front Oncol. 2016;6:218.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Houben AJ, Moolenaar WH. Autotaxin and LPA receptor signaling in cancer. Cancer Metastasis Rev. 2011;30(3–4):557–65.

    Article  PubMed  CAS  Google Scholar 

  154. Tager AM. Autotaxin emerges as a therapeutic target for idiopathic pulmonary fibrosis: limiting fibrosis by limiting lysophosphatidic acid synthesis. Am J Respir Cell Mol Biol. 2012;47(5):563–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Ninou I, Magkrioti C, Aidinis V. Autotaxin in pathophysiology and pulmonary fibrosis. Front Med (Lausanne). 2018;5:180.

    Article  Google Scholar 

  156. Huang LS, Natarajan V. Sphingolipids in pulmonary fibrosis. Adv Biol Regul. 2015;57:55–63.

    Article  PubMed  CAS  Google Scholar 

  157. Shea BS, Tager AM. Sphingolipid regulation of tissue fibrosis. Open Rheumatol J. 2012;6:123–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Huang LS, et al. Sphingosine-1-phosphate lyase is an endogenous suppressor of pulmonary fibrosis: role of S1P signalling and autophagy. Thorax. 2015;70(12):1138–48.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Part of this work was supported by grants from National Institutes of Health (R01HL131665, HL136294 to Y.Z., R01 GM115389, R01HL151513 to J.Z.). We thank Kevin C Tran and Sarah J Taleb for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutong Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhao, J., Zhao, Y. (2021). Lysophospholipids in Lung Inflammatory Diseases. In: Wang, YX. (eds) Lung Inflammation in Health and Disease, Volume I. Advances in Experimental Medicine and Biology, vol 1303. Springer, Cham. https://doi.org/10.1007/978-3-030-63046-1_20

Download citation

Publish with us

Policies and ethics