Skip to main content

Medicinal and Aromatic Plants Under Abiotic Stress: A Crosstalk on Phytohormones’ Perspective

  • Chapter
  • First Online:
Plant Growth Regulators

Abstract

Abiotic pressures such as metal/metalloids, salinity stress, ultraviolet-B radiation and ozone, temperature extremes, and water stress are the most potent limiting factors to sustainable agricultural practices in general and medicinal and aromatic plants in particular. Abiotic stresses alter the plants’ physiological/biochemical and molecular network, which in turn induce abnormalities in plant metabolic processes like growth, photosynthetic potential, development, and yield. Plant stress physiologists are currently engaged in cutting area research for engineering tolerance via the modulation of stress markers by external supplementation of organic and inorganic signaling elicitors. Phytohormones are organic signaling elicitors that control growth and development under a myriad of abiotic stresses in diverse crop plants. Very little attention has been paid on unraveling the mechanisms in medicinal and aromatic plants under abiotic stresses. In particular, the regulatory role of phytohormones is gaining new insights in improving abiotic stress tolerance in medicinal and aromatic plants in which phytohormones mediate the regulation of principal plant metabolic processes. Considering various recent updates, the current chapter highlights the role of phytohormones during environmental stresses in medicinal and aromatic plants. Special attention has been paid on the potentiality of foliar and priming application of phytohormones in imparting abiotic stress tolerance in medicinal and aromatic plants. In addition, some type specimens representing some important medicinal and aromatic plants have also been highlighted. Finally, a conclusion drawn from the present piece of collected literature at the end shows how phytohormones impart abiotic stress tolerance. The present review may elucidate new underlying mechanisms of phytohormone-mediated abiotic stress tolerance in medicinal and aromatic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afendi FM, Okada T, Yamazaki M, Hirai-Morita A, Nakamura Y, Nakamura K, Saito K (2011) KNApSAcK family databases: integrated metabolite–plant species databases for multifaceted plant research. Plant Cell Physiol 53:e1–e1

    Article  PubMed  CAS  Google Scholar 

  • Aftab T, Khan MMA, Idrees M, Naeem M, Hashmi N (2011) Methyl jasmonate counteracts boron toxicity by preventing oxidative stress and regulating antioxidant enzyme activities and artemisinin biosynthesis in Artemisia annua L. Protoplasma 248:601–612

    Article  CAS  PubMed  Google Scholar 

  • Ahanger MA, Ashraf M, Bajguz A, Ahmad P (2018) Brassinosteroids regulate growth in plants under stressful environments and crosstalk with other potential phytohormones. J Plant Growth Regul 37:1007–1024

    Article  CAS  Google Scholar 

  • Ahmad P, Abd_Allah EF, Alyemeni MN, Wijaya L, Alam P, Bhardwaj R, Siddique KH (2018a) Exogenous application of calcium to 24-epibrassinosteroid pre-treated tomato seedlings mitigates NaCl toxicity by modifying ascorbate– glutathione cycle and secondary metabolites. Sci Rep 8:13515

    Google Scholar 

  • Ahmad B, Jaleel H, Sadiq Y, Khan MMA, Shabbir A (2018b) Response of exogenous salicylic acid on cadmium induced photosynthetic damage, antioxidant metabolism and essential oil production in peppermint. Plant Growth Regul 86:273–286

    Article  CAS  Google Scholar 

  • Ahmad B, Zaid A, Sadiq Y, Bashir S, Wani SH (2019) Role of selective exogenous elicitors in plant responses to abiotic stress tolerance. In: Plant abiotic stress tolerance. Springer, Cham, pp 273–290

    Chapter  Google Scholar 

  • Amirmoradi S, MOGHADDAM PR, Koocheki A, DANESH S, Fotovat A (2012) Effect of cadmium and lead on quantitative and essential oil traits of peppermint (Mentha piperita L.). Not Sci Biol 4:101–109

    Article  CAS  Google Scholar 

  • Anonymous (2012). Raw materials. In: The Wealth of India- a Dictionary of Indian Raw Materials and Industrial Products (Vol. 6), L-M. Council of Scientific and Industrial Research, New Delhi, pp 124–125

    Google Scholar 

  • Balandrin MF, Klocke JA (1988) Medicinal, aromatic, and industrial materials from plants. In: Medicinal and aromatic plants I. Springer, Berlin, Heidelberg, pp 3–36

    Chapter  Google Scholar 

  • Banerjee A, Roychoudhury A (2018) Interactions of Brassinosteroids with major phytohormones: antagonistic effects. J Plant Growth Regul 37:1025–1032

    Article  CAS  Google Scholar 

  • Banerjee A, Ghosh P, Roychoudhury A (2019) Salt acclimation differentially regulates the metabolites commonly involved in stress tolerance and aroma synthesis in indica rice cultivars. Plant Growth Regul:1–11

    Google Scholar 

  • Barros AS, Morais SM, Ferreira PAT, Vieira IGP, Craveiro AA, Fontenelle ROS, Menezes JESA, Silva FWF, Sousa HA (2015) Chemical composition and functional properties of essential oils from Mentha species. Indus Crop Prod 76:557–564

    Article  CAS  Google Scholar 

  • Bhat S, Maheshwari P, Kumar S, Kumar A (2002) Mentha species: in vitro regeneration and genetic transformation. Mol Biol Today 3:11–23

    CAS  Google Scholar 

  • Bharti N, Barnawal D, Awasthi A, Yadav A, Kalra A (2014) Plant growth promoting rhizobacteria alleviate salinity induced negative effects on growth, oil content and physiological status in Mentha arvensis. Acta Physiol Plant 36(1):45–60

    Google Scholar 

  • Bharti N, Barnawal D, Shukla S, Tewari SK, Katiyar RS, Kalra A (2016) Integrated application of Exiguobacterium oxidotolerans, Glomus fasciculatum, and vermicompost improves growth, yield and quality of Mentha arvensis in salt-stressed soils. Ind Crop Prod 83:717–728

    Google Scholar 

  • Bhattacharjee SK (2000) Handbook of medicinal plants. Aavishkar Publishers

    Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 5477–5486

    Google Scholar 

  • Cao XQ, Jiang ZH, Yi YY, Yang Y, Ke LP, Pei ZM, Zhu S (2017) Biotic and abiotic stresses activate different Ca2+ permeable channels in Arabidopsis. Front Plant Sci 8:83

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaiyarat R, Suebsima R, Putwattana N, Kruatrachue M, Pokethitiyook P (2011) Effects of soil amendments on growth and metal uptake by Ocimum gratissimum grown in Cd/Zn-contaminated soil. Water Air Soil Poll 214:383–392

    Article  CAS  Google Scholar 

  • Chand S, Patra NK, Anwar M, Patra DD (2004) Agronomy and uses of menthol mint (Mentha arvensis)-Indian perspective. Proceedings of the Indian National Science Academy Part B. Biol Sci 70(3):269–297

    Google Scholar 

  • Choudhary S, Zehra A, Naeem M, Khan MMA, Aftab T (2020) Effects of boron toxicity on growth, oxidative damage, antioxidant enzymes and essential oil fingerprinting in Mentha arvensis and Cymbopogon flexuosus. https://doi.org/10.1186/s40538-019-0175-y

  • Ciura J, Kruk J (2018) Phytohormones as targets for improving plant productivity and stress tolerance. J Plant Physiol 229:32–40

    Article  CAS  PubMed  Google Scholar 

  • Çoban Ö, Baydar NG (2016) Brassinosteroid effects on some physical and biochemical properties and secondary metabolite accumulation in peppermint (Mentha piperita L.) under salt stress. Indus Crops Prod 86:251–258

    Article  CAS  Google Scholar 

  • Çoban Ö, Baydar NG (2017) Brassinosteroid modifies growth and essential oil production in peppermint (Mentha piperita L.). J Plant Growth Regul 36:43–49

    Article  CAS  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    Article  PubMed  PubMed Central  Google Scholar 

  • Demkura PV, Abdala G, Baldwin IT, Ballaré CL (2010) Jasmonate-dependent and-independent pathways mediate specific effects of solar ultraviolet B radiation on leaf phenolics and antiherbivore defense. Plant Physiol 152:1084–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon RA (2003) Phytochemistry meets genome analysis, and beyond. Phytochemistry 62:815–816

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed M, Verpoorte R (2007) Catharanthus terpenoid indole alkaloids: biosynthesis and regulation. Phytochem Rev 6:277–305

    Article  CAS  Google Scholar 

  • Facchini PJ, Bohlmann J, Covello PS, De Luca V, Mahadevan R, Page JE, Ro DK, Sensen CW, Storms R, Martin VJ (2012) Synthetic biosystems for the production of high-value plant metabolites. Trend Biotechnol 30:127–131

    Article  CAS  Google Scholar 

  • Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, Faiq M (2015) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul 75:391–404

    Article  CAS  Google Scholar 

  • Feller U, Kingston-Smith AH, Centritto M (2017) Editorial: abiotic stresses in agroecology: a challenge for whole plant physiology. Front Environ Sci 5:13. https://doi.org/10.3389/fenvs.2017.00013

    Article  Google Scholar 

  • Ferreira JFS, Janick J (1996) Distribution of artemisinin in Artemisia annua. ASHS Press, Arlington

    Google Scholar 

  • Ford AC, Talley NJ, Spiegel BM, Foxx-Orenstein AE, Schiller L, Quigley EM, Moayyedi P (2008) Effect of fibre, antispasmodics and peppermint oil in the treatment of irritable bowel syndrome: systematic review and meta-analysis. BMJ 337:1388–1392

    Article  Google Scholar 

  • Fürstenberg-Hägg J, Zagrobelny M, Bak S (2013) Plant defense against insect herbivores. Inter J Mol Sci 14:10242–10297

    Article  CAS  Google Scholar 

  • Gémes K, Poór P, Horváth E, Kolbert Z, Szopkó D, Szepesi Á, Tari I (2011) Cross-talk between salicylic acid and NaCl-generated reactive oxygen species and nitric oxide in tomato during acclimation to high salinity. Physiol Plant 142:179–192

    Article  PubMed  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gueritte F, Fahy J (2005) The vinca alkaloids. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. Brunner-Routledge Psychology Press, Taylor & Francis, Boca Raton, pp 123–136

    Google Scholar 

  • Guo XR, Chang BW, Zu YG, Tang ZH (2014) The impacts of increased nitrate supply on Catharanthus roseus growth and alkaloid accumulations under ultraviolet-B stress. J Plant Interact 9:640–646

    Article  CAS  Google Scholar 

  • Gupta AK, Verma SK, Khan K, Verma RK (2013) Phytoremediation using aromatic plants: a sustainable approach for remediation of heavy metals polluted sites. Environ Sci Technol 47:10115–10116

    CAS  PubMed  Google Scholar 

  • He M, He C-Q, Ding N-Z (2018) Abiotic stresses: general defenses of land plants and chances for engineering multistress tolerance. Front Plant Sci 9:1771. https://doi.org/10.3389/fpls.2018.01771

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang J, Forkelová L, Unsicker SB, Forkel M, Griffith DW, Trumbore S, Hartmann H (2019) Isotope labeling reveals contribution of newly fixed carbon to carbon storage and monoterpenes production under water deficit and carbon limitation. Environ Exp Bot 2019. https://doi.org/10.1016/j.envexpbot.2019.03.010

  • Idrees M, Khan MMA, Aftab T, Naeem M, Hashmi N (2010) Salicylic acid- induced physiological and biochemical changes in lemongrass varieties under water stress. J Plant Inter 5:293–303

    CAS  Google Scholar 

  • Jaleel CA, Manivannan P, Sankar B, Kishorekumar A, Panneerselvam R (2007) Calcium chloride effects on salinity-induced oxidative stress, proline metabolism and indole alkaloid accumulation in Catharanthus roseus. Comptes Rendus Biol 330:674–683

    Article  CAS  Google Scholar 

  • Jamwal K, Bhattacharya S, Puri S (2018) Plant growth regulator mediated consequences of secondary metabolites in medicinal plants. J App Res Med Arom Plants 9:26–38

    Google Scholar 

  • Kapp K (2015) Polyphenolic and essential oil composition of Mentha and their antimicrobial effect. Hansaprint Printing House, Helsinki, pp 1–90

    Google Scholar 

  • Khanam D (2014) Influence of various PGRs on physiological attributes, yield characteristics and essential oil constituents of Mentha piperita L. M.Phil. dissertation, Aligarh Muslim University, India

    Google Scholar 

  • Khanam D, Mohammad F (2017) Effect of structurally different plant growth regulators (PGRs) on the concentration, yield, and constituents of peppermint essential oil. J Herbs Spices Med Plants 23(1):26–35

    Google Scholar 

  • Khanam D, Mohammad F (2018) Plant growth regulators ameliorate the ill effect of salt stress through improved growth, photosynthesis, antioxidant system, yield and quality attributes in Mentha piperita L. Acta Physiol Plant 40:188

    Article  CAS  Google Scholar 

  • Kissoudis C, van de Wiel C, Visser RG, van der Linden G (2014) Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk. Front Plant Sci 5:207

    Article  PubMed  PubMed Central  Google Scholar 

  • Kline RM, Kline JJ, Di Palma J, Barbero GJ (2001) Enteric-coated, pH-dependent peppermint oil capsules for the treatment of irritable bowel syndrome in children. J Pediatr 138:125–128

    Article  CAS  PubMed  Google Scholar 

  • Konotop Y, Mezsaros P, Matusikova I, Batsmanova L, Taran N (2012) Application of nitrogen nutrition for improving tolerance of soybean seedlings to cadmium. Environ Exp Biol 10:139–144

    Google Scholar 

  • Khanuja SPS, Kalra A, Singh A, Patra DD, Patra NK, Tondon S, Singh AK, Singh HN, Singh S, Tiwari R (2006) Form bulletin: menthol mint cultivation. Central Institute of Medicinal and Aromatic Plants, Lucknow, India

    Google Scholar 

  • Kumari A, Pandey N, Pandey-Rai S (2018) Exogenous salicylic acid-mediated modulation of arsenic stress tolerance with enhanced accumulation of secondary metabolites and improved size of glandular trichomes in Artemisia annua L. Protoplasma 255:139–152

    Article  CAS  PubMed  Google Scholar 

  • Lajayer BA, Ghorbanpour M, Nikabadi S (2017) Heavy metals in contaminated environment: destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants. Ecotoxicol Environ Saf 145:377–390

    Article  CAS  Google Scholar 

  • Lawrence BM (2006) Mint: the genus Mentha. CRC Press

    Google Scholar 

  • Liu J, Liu Y, Wang Y, Zhang Z-H, Zu Y-G, Efferth T, Tang Z-H (2016) The combined effects of ethylene and MeJA on metabolic profiling of phenolic compounds in Catharanthus roseus revealed by metabolomics analysis. Front Physiol 7:217. https://doi.org/10.3389/fphys.2016.00217

    Article  PubMed  PubMed Central  Google Scholar 

  • Maury S, Sow MD, Le Gac A-L, Genitoni J, Lafon-Placette C, Mozgova I (2019) Phytohormone and chromatin crosstalk: the missing link for developmental plasticity? Front Plant Sci 10:395. https://doi.org/10.3389/fpls.2019.00395

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazid M, Khan TA, Mohammad F (2011) Role of secondary metabolites in defense mechanisms of plants. Biol Med 3:232–249

    CAS  Google Scholar 

  • Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh HB (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172

    Article  PubMed  PubMed Central  Google Scholar 

  • MIRC (2010) Mint Industry Research Council. Great Falls, MT. Available at http://usmintindustry.org

  • Mohsenzadeh M (2007) Evaluation of antibacterial activity of selected Iranian essential oils against Staphylococcus aureus and Escherichia coli in nutrient broth medium. Pak J Biol Sci 10:3693–3697

    Article  PubMed  Google Scholar 

  • Moreno PRH, Ven der Heijden R, Verpoorte R (1995) Cell and tissue cultures of Catharanthus roseus: a literature survey. Plant Cell Tissue Organ Cult 42:1–25

    Article  Google Scholar 

  • Mulabagal V, Tsay HS (2004) Plant cell cultures-an alternative and efficient source for the production of biologically important secondary metabolites. Inter J Applied Sci Eng 2:29–48

    Google Scholar 

  • Nabaei M, Amooaghaie R (2019) Interactive effect of melatonin and sodium nitroprusside on seed germination and seedling growth of Catharanthus roseus under cadmium stress. Russ J Plant Physiol:1–12

    Google Scholar 

  • Naeem M, Aftab T, Idrees M, Singh M, Ali A, Khan MMA, Varshney L (2017) Modulation of physiological activities, active constituents and essential oil production of Mentha arvensis L. by concomitant application of depolymerised carrageenan, triacontanol and 28-homobrassinolide. J Essen Oil Res 29:179–188

    Article  CAS  Google Scholar 

  • Nakajima H, Fujimoto N, Yamamoto Y, Amemiya T, Itoh K (2019) Response of secondary metabolites to cu in the cu-hyperaccumulator lichen Stereocaulon japonicum. Environ Sci Pollut Res 26:905–912

    Article  CAS  Google Scholar 

  • Osama S, El Sherei M, Al-Mahdy DA, Bishr M, Salama O (2019) Effect of salicylic acid foliar spraying on growth parameters, γ-pyrones, phenolic content and radical scavenging activity of drought stressed Ammi visnaga L. plant. Indus Crops Prod 134:1–10

    Article  CAS  Google Scholar 

  • Paeizi M, Karimi F, Razavi K (2018) Changes in medicinal alkaloids production and expression of related regulatory and biosynthetic genes in response to silver nitrate combined with methyl jasmonate in Catharanthus roseus in vitro propagated shoots. Plant Physiol Biochem 132:623–632

    Article  CAS  PubMed  Google Scholar 

  • Pande P, Anwar M, Chand S, Yadav VK, Patra, DD (2007) Optimal level of iron and zinc in relation to its influence on herb yield and production of essential oil in menthol mint. Commun Soil Sci Plant Anal 38(5–6):561–578

    Google Scholar 

  • Patra DD, Anwar M, Chand S, Kiran U, Rajput DK, Kumar S (2002) Nimin and Mentha spicata oil as nitrification inhibitors for optimum yield of Japanese mint. Commun Soil Sci Plant Anal 33(3–4):451–460

    Google Scholar 

  • Peebles C, Shanks J, San K (2009) The role of the octadecanoid pathway in the production of terpenoid indole alkaloids in Catharanthus roseus hairy roots under normal and UV-B stress conditions. Biotechnol Bioeng 103:1248–1254

    Article  CAS  PubMed  Google Scholar 

  • Phukan UJ, Mishra S, Timbre K, Luqman S, Shukla RK (2014) Mentha arvensis exhibit better adaptive characters in contrast to Mentha piperita when subjugated to sustained waterlogging stress. Protoplasma 251(3):603–614

    Google Scholar 

  • Podlešáková K, Ugena L, Spíchal L, Doležal K, De Diego N (2018) Phytohormones and polyamines regulate plant stress responses by altering GABA pathway. New Biotechnol 48:53–65

    Article  CAS  Google Scholar 

  • Pyne ME, Narcross L, Martin VJ (2019) Engineering plant secondary metabolism in microbial systems. Plant Physiol 179:844–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahimi AR, Rokhzadi A, Amini S, Karami E (2013) Effect of salicylic acid and methyl jasmonate on growth and secondary metabolites in Cuminum cyminum L. J Biodivers Environ Sci 3:140–149

    Google Scholar 

  • Rajpoot R, Rani A, Srivastava RK, Pandey P, Dubey RS (2018) Protective Role of Mentha arvensis Aqueous Extract against Manganese Induced Toxicity by Reducing Mn Translocation and Promoting Antioxidative Defense in growing Indica Rice Seedlings. J Crop Sci Biotechnol 21:353–366

    Article  Google Scholar 

  • Ramawat KG, Goyal S (2008) The Indian herbal drugs scenario in global perspectives. In: Bioactive molecules and medicinal plants. Springer, Berlin, Heidelberg, pp 325–347

    Chapter  Google Scholar 

  • Rao RS, Ravishankar GA (2002) Plant tissue cultures; chemical factories of secondary metabolites. Biotechnol Advan 20:101–153

    Article  CAS  Google Scholar 

  • Saharkhiz MJ, Goudarzi T (2014) Foliar application of salicylic acid changes essential oil content and chemical compositions of peppermint (Mentha piperita L.). J Essen Oil Bear Plants 17:435–440

    Article  CAS  Google Scholar 

  • Sain M, Sharma V (2013) Catharanthus roseus (An anti-cancerous drug yielding plant). A review of potential therapeutic properties. Int J Pure App. Biosci 1:139–142

    Google Scholar 

  • Saller R (2004) Peppermint (Mentha piperita), medicinal plant of the year 2004. Forsch Komplementärmed Klass Naturheilkd 11:6–7

    CAS  PubMed  Google Scholar 

  • Santoro MV, Nievas F, Zygadlo J, Giordano W, Banchio E (2013) Effects of growth regulators on biomass and the production of secondary metabolites in peppermint (Mentha piperita) micropropagated in vitro. Am J Plant Sci 4:49–55

    Article  CAS  Google Scholar 

  • Sastri BN (1950) The Wealth of India. A dictionary of Indian raw materials and industrial products. Raw materials. CSIR-New Delhi, pp. 342–344

    Google Scholar 

  • Shukla A, Farooqi AA, Shukla YN, Sharma S (1992) Effect of triacontanol and chlormequat on growth, plant hormones and artemisinin yield in Artemisia annua L. Plant Growth Regul 11:165–171

    Article  CAS  Google Scholar 

  • Singh R, Shushni MA, Belkheir A (2015) Antibacterial and antioxidant activities of Mentha piperita L. Arab J Chem 8:322–328

    Article  CAS  Google Scholar 

  • Srivastava NK, Srivastava AK (2010) Influence of some heavy metals on growth, alkaloid content and composition in Catharanthus roseus L. Indian J Pharm Sci 72:775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sytar O, Kumari P, Yadav S, Brestic M, Rastogi A (2018) Phytohormone priming: regulator for heavy metal stress in plants. J Plant Growth Regul:1–14

    Google Scholar 

  • Thatoi H, Patra JK (2011) Biotechnology and pharmacological evaluation of medicinal plants: an overview. Int J Geogr Inf Syst 17:214–248

    CAS  Google Scholar 

  • Tiwari P (2016) Recent advances and challenges in trichome research and essential oil biosynthesis in Mentha arvensis L. Indus Crops Prod 82:141–148

    Article  CAS  Google Scholar 

  • Ullah A, Manghwar H, Shaban M, Khan AH, Akbar A, Ali U, Fahad S (2018) Phytohormones enhanced drought tolerance in plants: a coping strategy. Environ Sci Pollut Res 25:33103–33118

    Article  CAS  Google Scholar 

  • Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. The Crop J 4:162–176

    Article  Google Scholar 

  • Wani W, Masoodi KZ, Zaid A, Wani SH, Shah F, Meena VS, Mosa KA (2018a) Engineering plants for heavy metal stress tolerance. Ren Lincei Sci Fis e Nat 29:709–723

    Article  Google Scholar 

  • Wani SH, Tripathi P, Zaid A, Challa GS, Kumar A, Kumar V, Bhatt M (2018b) Transcriptional regulation of osmotic stress tolerance in wheat (Triticum aestivum L.). Plant Mol Biol 97:469–487

    Article  CAS  PubMed  Google Scholar 

  • Weng JK (2014) The evolutionary paths towards complexity: a metabolic perspective. The New Phytol 201:1141–1149

    Article  PubMed  Google Scholar 

  • Xiao L, Tan HX, Zhang L (2016) Artemisia annua glandular secretory trichomes: the biofactory of antimalarial agent artemisinin. Sci Bull 61:26–36. https://doi.org/10.1007/s11434-015-0980-z

    Article  CAS  Google Scholar 

  • Yildirim E, Turan M, Guvenc I (2008) Effect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. J Plant Nut 31:593–612

    Article  CAS  Google Scholar 

  • Zaid A, Mohammad F (2018) Methyl jasmonate and nitrogen interact to alleviate cadmium stress in Mentha arvensis by regulating physio-biochemical damages and ROS detoxification. J Plant Growth Regul 37:1331–1348

    Article  CAS  Google Scholar 

  • Zaid A, Gul F, Ahanger MA, Ahmad P (2018) Silicon-mediated alleviation of stresses in plants. In: Plant metabolites and regulation under environmental stress. Academic Press, pp 377–387

    Google Scholar 

  • Zhai T, Wang Y, Liu C, Liu Z, Zhao M, Chang Y, Zhang R (2019) Trichoderma asperellum ACCC30536 inoculation improves soil nutrition and leaf artemisinin production in Artemisia annua. Acta Physiol Plant 41:46

    Article  CAS  Google Scholar 

  • Zhang Z, Lan M, Han X, Wu J, Wang-Pruski G (2019) Response of ornamental pepper to high-temperature stress and role of exogenous salicylic acid in mitigating high temperature. J Plant Growth Regul:1–14

    Google Scholar 

  • Zheljazkov VD, Astatkie T, Horgan T, Rogers SM (2010) Effect of plant hormones and distillation water on mints. Hortscience 45:1338–1340

    Google Scholar 

  • Zhou M, Memelink J (2016) Jasmonate-responsive transcription factors regulating plant secondary metabolism. Biotechnol Advan 34:441–449

    Article  CAS  Google Scholar 

  • Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zinta G, Khan A, AbdElgawad H, Verma V, Srivastava AK (2016) Unveiling the redox control of plant reproductive development during abiotic stress. Front Plant Sci 7:700

    Article  PubMed  PubMed Central  Google Scholar 

  • Zinta G, AbdElgawad H, Peshev D, Weedon JT, Van den Ende W, Nijs I, Asard H (2018) Dynamics of metabolic responses to periods of combined heat and drought in Arabidopsis thaliana under ambient and elevated atmospheric CO2. J Exp Bot 69:2159–2170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbu Zaid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zaid, A., Ahmad, B., Wani, S.H. (2021). Medicinal and Aromatic Plants Under Abiotic Stress: A Crosstalk on Phytohormones’ Perspective. In: Aftab, T., Hakeem, K.R. (eds) Plant Growth Regulators. Springer, Cham. https://doi.org/10.1007/978-3-030-61153-8_5

Download citation

Publish with us

Policies and ethics