Skip to main content

Advertisement

Log in

Methyl Jasmonate and Nitrogen Interact to Alleviate Cadmium Stress in Mentha arvensis by Regulating Physio-Biochemical Damages and ROS Detoxification

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

We examined effects of methyl jasmonate (MeJ), with and without N, for the alleviation of the adverse effects of 150 mg kg−1 CdCl2 stress in mentholmint (Mentha arvensis) plants. Exposure of mentholmint plants to Cd stress reduced morphological growth parameters, photosynthetic attributes, chlorophyll content and mineral nutrient assimilation rate. Cd stress significantly increased endogenous leaf and root Cd content by 67.10% and 83.05%, respectively, electrolyte leakage by 67.26%, hydrogen peroxide (H2O2) by 56.66% and malondialdehyde content by 53.97% over that of the control. Cd stress upregulated activities of antioxidant enzymes and increased osmolyte concentration. Application of 1 µM MeJ to Cd-stressed plants partially alleviated the Cd-induced oxidative stress; however, co-application of MeJ with inorganic N reversed the detrimental effects more than did MeJ or N alone. Combined application of MeJ + N further elevated the osmolyte levels and markedly increased mineral nutrient contents and nitrogen use efficiency. MeJ + N significantly reduced the production of reactive oxygen species (ROS) directly or indirectly through higher stimulation of ROS-scavenging enzymes and decreased the root-to-shoot Cd rate of translocation. Cd-induced stomatal inhibition was recovered by MeJ and N. Our study demonstrated the regulatory role of MeJ and N in overcoming Cd stress in mentholmint plants. The study is the first report of regulatory interaction of the exogenous phytohormone (MeJ) with inorganic nutrient (N) for enhancing Cd stress tolerance in mentholmint plants, the same concept can be used for remediation of toxic metal/metalloids in agricultural production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abd-Allah EF, Hashem A, Alqarawi AA, Alwathnani HA (2015) Alleviation of adverse impact of cadmium stress in sunflower (Helianthus annuus L.) by arbuscular mycorrhizal fungi. Pak J Bot 47:785–795

    CAS  Google Scholar 

  • Aebi H (1986) Catalase in vitro. Method Enzymol 105:121–126

    Google Scholar 

  • Aftab T, Khan MMA, Idrees M, Naeem M, Hashmi N (2011) Methyl jasmonate counteracts boron toxicity by preventing oxidative stress and regulating antioxidant enzyme activities and artemisinin biosynthesis in Artemisia annua L. Protoplasma 248:601–612

    CAS  PubMed  Google Scholar 

  • Ahanger MA, Akram NA, Ashraf M, Alyemeni MN, Wijaya L, Ahmad P (2017) Plant responses to environmental stresses—from gene to biotechnology. AoB Plants 9:4. https://doi.org/10.1093/aobpla/plx025

    Article  CAS  Google Scholar 

  • Ahmad P, Nabi G, Ashraf M (2011) Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. South Afr J Bot 77:36–44

    CAS  Google Scholar 

  • Ahmad P, Sarwat M, Bhat NA, Wani MR, Kazi AG, Tran LSP (2015) Alleviation of cadmium toxicity in Brassica juncea L. (Czern. & Coss.) by calcium application involves various physiological and biochemical strategies. PLoS ONE. https://doi.org/10.1371/journal.pone.0114571

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Abdel Latef AA, Abd_Allah EF, Hashem A, Sarwat M, Anjum NA, Gucel S (2016a) Calcium and potassium supplementation enhanced growth, osmolyte secondary metabolite production, and enzymatic antioxidant machinery in cadmium-exposed chickpea (Cicer arietinum L.). Front Plant Sci 7:513. https://doi.org/10.3389/fpls.2016.00513

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Rasool S, Gul A, Sheikh SA, Akram NA, Ashraf M, Gucel S (2016b) Jasmonates: multifunctional roles in stress tolerance. Front Plant Sci 7:813. https://doi.org/10.3389/fpls.2016.00813

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Alyemeni MN, Wijaya L, Alam P, Ahanger MA, Alamri SA (2017a) Jasmonic acid alleviates negative impacts of cadmium stress by modifying osmolytes and antioxidants in faba bean (Vicia faba L.). Arch Agron Soil Sci 63:1889–1899

    CAS  Google Scholar 

  • Ahmad P, Ahanger MA, Alyemeni MN, Wijaya L, Alam P (2017b) Exogenous application of nitric oxide modulates osmolyte metabolism, antioxidants, enzymes of ascorbate-glutathione cycle and promotes growth under cadmium stress in tomato. Protoplasma 255:79–93

    PubMed  Google Scholar 

  • Ai Z, Wang G, Liang C, Liu H, Zhang J, Xue S, Liu G (2017) The effects of nitrogen addition on the uptake and allocation of macro-and micronutrients in Bothriochloa ischaemum on Loess Plateau in China. Front Plant Sci. https://doi.org/10.3389/fpls.2017.01476

    Article  PubMed  PubMed Central  Google Scholar 

  • Akram M, Iqbal M, Jamil M (2014) The response of wheat (Triticum aestivum L.) to integrating effects of drought stress and nitrogen management. Bul J Agr Sci 20:275–286

    Google Scholar 

  • Akram NA, Shafiq F, Ashraf M (2017) Ascorbic acid-A potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00613

    Article  PubMed  PubMed Central  Google Scholar 

  • Alyemeni MN, Ahanger MA, Wijaya L, Alam P, Bhardwaj R, Ahmad P (2018) Selenium mitigates cadmium-induced oxidative stress in tomato (Solanum lycopersicum L.) plants by modulating chlorophyll fluorescence, osmolyte accumulation, and antioxidant system. Protoplasma 255:459–469

    CAS  PubMed  Google Scholar 

  • Anetor JI, Uche CZ, Ayita EB, Adedapo SK, Adeleye JO, Anetor GO, Akinlade SK (2016) Cadmium level, glycemic control, and indices of renal function in treated type II diabetics: implications for polluted environments. Front Public Health. https://doi.org/10.3389/fpubh.2016.00114

    Article  PubMed  PubMed Central  Google Scholar 

  • Anjum NA, Umar S, Iqbal M (2014) Assessment of cadmium accumulation, toxicity, and tolerance in Brassicaceae and Fabaceae plants-implications for phytoremediation. Environ Sci Pollut Res 21:10286–10293

    CAS  Google Scholar 

  • Asgher M, Khan MIR, Anjum NA, Khan NA (2014) Minimising toxicity of cadmium in plants—role of plant growth regulators. Protoplasma 252:399–413

    PubMed  Google Scholar 

  • Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    CAS  Google Scholar 

  • Beevers L, Hageman RH (1969) Nitrate reduction in higher plants. Ann Rev Plant Physiol 20:495–522

    CAS  Google Scholar 

  • Cetner MD, Kalaji HM, Goltsev V, Aleksandrov V, Kowalczyk K, Borucki W, Jajoo A (2017) Effects of nitrogen-deficiency on efficiency of light-harvesting apparatus in radish. Plant Physiol Biochem 119:81–92

    CAS  PubMed  Google Scholar 

  • Chao YY, Hong CY, Kao CH (2010) The decline in ascorbic acid content is associated with cadmium toxicity of rice seedlings. Plant Physiol Biochem 48:374–381

    CAS  PubMed  Google Scholar 

  • Chen CT, Kao CH (1993) Osmotic stress and water stress have opposite effects on putrescine and proline production in excised rice leaves. Plant Growth Regul 13:197–202

    Google Scholar 

  • Chen TH, Murata N (2009) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ 34:1–20

    Google Scholar 

  • Chen J, Yan Z, Li X (2014) Effect of methyl jasmonate on cadmium uptake and antioxidative capacity in Kandelia obovata seedlings under cadmium stress. Ecotoxicol Environ Saf 104:349–356

    CAS  PubMed  Google Scholar 

  • Correia CM, Pereira JMM, Coutinho JF, Björn LO, Torres-Pereira JMG (2005) Ultraviolet-B radiation and nitrogen affect the photosynthesis of maize: a Mediterranean field study. Eur J Agr 22:337–347

    CAS  Google Scholar 

  • Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Nawrot T (2010) Cadmium stress: an oxidative challenge. Biometals 23:927–940

    CAS  PubMed  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1988) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    Google Scholar 

  • Fan JW, Du YL, Wang BR, Turner NC, Wang T, Abbott LK, Li FM (2016) Forage yield, soil water depletion, shoot nitrogen and phosphorus uptake and concentration, of young and old stands of alfalfa in response to nitrogen and phosphorus fertilisation in a semiarid environment. Field Crops Res 198:247–257

    Google Scholar 

  • Farooq MA, Gill RA, Islam F, Ali B, Liu H, Xu J, Zhou W (2016) Methyl jasmonate regulates antioxidant defense and suppresses arsenic uptake in Brassica napus L. Front Plant Sci. https://doi.org/10.3389/fpls.2016.00468

    Article  PubMed  PubMed Central  Google Scholar 

  • Farooq MA, Islam F, Yang C, Nawaz A, Gill RA, Ali B, Zhou W (2018) Methyl jasmonate alleviates arsenic-induced oxidative damage and modulates the ascorbate–glutathione cycle in oilseed rape roots. Plant Growth Regul 84:135–148

    CAS  Google Scholar 

  • Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    CAS  Google Scholar 

  • Foster JG, Hess JL (1980) Responses of superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiol 66:482–487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao XP, Wang XF, Lu YF, Zhang LY, Shen YY, Liang Z, Zhang DP (2004) Jasmonic acid is involved in the water-stress-induced betaine accumulation in pear leaves. Plant Cell Environ 27:497–507

    CAS  Google Scholar 

  • Giansoldati V, Tassi E, Morelli E, Gabellieri E, Pedron F, Barbafieri M (2012) Nitrogen fertilizer improves boron phytoextraction by Brassica juncea grown in contaminated sediments and alleviates plant stress. Chemosphere 87:1119–1125

    CAS  PubMed  Google Scholar 

  • Gill SS, Khan NA, Tuteja N (2012) Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plant Sci 182:112–120

    CAS  PubMed  Google Scholar 

  • Goel P, Singh AK (2015) Abiotic stresses downregulate key genes involved in nitrogen uptake and assimilation in Brassica juncea L. Plos one 10:e0143645. https://doi.org/10.1371/journal.pone.0143645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez S, Ferrieri RA, Schueller M, Orians CM (2010) Methyl jasmonate elicits rapid changes in carbon and nitrogen dynamics in tomato. New Phytol 188:835–844

    PubMed  Google Scholar 

  • Grieve CM, Grattan SR (1983) Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 70:303–307

    CAS  Google Scholar 

  • Guo H, Hong C, Chen X, Xu Y, Liu Y, Jiang D, Zheng B (2016) Different growth and physiological responses to cadmium of the three Miscanthus species. PLoS ONE 11:e0153475. https://doi.org/10.1371/journal.pone.0153475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hald PM (1947) The flame photometer for the measurement of sodium and potassium in biological materials. J Biol Chem 167:499–510

    CAS  PubMed  Google Scholar 

  • Hanaka A, Maksymiec W, Bednarek W (2015) The effect of methyl jasmonate on selected physiological parameters of copper-treated Phaseolus coccineus plants. Plant Growth Regul 77:167–177

    CAS  Google Scholar 

  • Huang C, He W, Guo J, Chang X, Su P, Zhang L (2005) Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutant. J Exp Bot 56:3041–3049

    CAS  PubMed  Google Scholar 

  • Huang H, Gao H, Liu B, Qi T, Tong J, Xiao L, Song S (2017) Arabidopsis MYB24 regulates jasmonate-mediated stamen development. Front Plant Sci 8:1525

    PubMed  PubMed Central  Google Scholar 

  • Huang L, Li M, Zhou K, Sun T, Hu L, Li C, Ma F (2018) Uptake and metabolism of ammonium and nitrate in response to drought stress in Malus prunifolia. Plant Physiol Biochem 127:185–193

    CAS  PubMed  Google Scholar 

  • Huez López MA, Ulery AL, Samani Z, Picchioni G, Flynn R (2011) Response of chile pepper (Capsicum annuum L.) to salt stress and organic and inorganic nitrogen sources: I. growth and yield. Trop Subtrop Agroecol 14(1):757–763

    Google Scholar 

  • Iqbal N, Nazar R, Syeed S, Masood A, Khan NA (2011) Exogenously-sourced ethylene increases stomatal conductance, photosynthesis, and growth under optimal and deficient nitrogen fertilization in mustard. J Exp Bot 62:4955–4963

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal N, Umar S, Khan NA (2015) Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea). J Plant Physiol 178:84–91

    CAS  PubMed  Google Scholar 

  • Jaworski EG (1971) Nitrate reductase assay in intact plant tissues. Biochem Biophys Res Commun 43:1274–1279

    CAS  PubMed  Google Scholar 

  • Kaur R, Yadav P, Sharma A, Thukral AK, Kumar V, Kohli SK, Bhardwaj R (2017) Castasterone and citric acid treatment restores photosynthetic attributes in Brassica juncea L. under Cd(II) toxicity. Ecotoxicol Environ Saf 145:466–475

    CAS  PubMed  Google Scholar 

  • Kavi Kishor PB, Sreenivasulu N (2014) Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant Cell Environ 37:300–311

    CAS  PubMed  Google Scholar 

  • Keramat B, Kalantari KM, Arvin MJ (2009) Effects of methyl jasmonate in regulating cadmium induced oxidative stress in soybean plant (Glycine max L.) Afr. J Microbiol Res 3:240–244

    CAS  Google Scholar 

  • Khan NM, Siddiqui MH, Mohammad F, Naeem M, Khan MMA (2009) Calcium chloride and gibberellic acid protect linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defence system and osmoprotectant accumulation. Acta Physiol Plant 32:121–132

    Google Scholar 

  • Khan MIR, Khan NA, Masood A, Per TS, Asgher M (2016a) Hydrogen peroxide alleviates nickel-inhibited photosynthetic responses through increase in use-efficiency of nitrogen and sulfur, and glutathione production in mustard. Front Plant Sci. https://doi.org/10.3389/fpls.2016.00044

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan NA, Asgher M, Per TS, Masood A, Fatma M, Khan MIR (2016b) Ethylene potentiates sulfur-mediated reversal of cadmium inhibited photosynthetic responses in mustard. Front Plant Sci 7:1628. https://doi.org/10.3389/fpls.2016.01628

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan A, Tan DKY, Afridi MZ, Luo H, Tung SA, Ajab M, Fahad S (2017) Nitrogen fertility and abiotic stresses management in cotton crop: a review. Environ Sci Pollut Res 24:14551–14566

    CAS  Google Scholar 

  • Konotop Y, Mezsaros P, Matusikova I, Batsmanova L, Taran N (2012) Application of nitrogen nutrition for improving tolerance of soybean seedlings to cadmium. Environ Exp Bot 10:139–144

    Google Scholar 

  • Kováčik J, Klejdus B, Štork F, Hedbavny J, Bačkor M (2011) Comparison of methyl jasmonate and cadmium effect on selected physiological parameters in Scenedesmus quadricauda (Chlorophyta, Chlorophyceae). J Phycol 47:1044–1049

    PubMed  Google Scholar 

  • Kováčik J, Babula P, Hedbavny J (2017) Comparison of vascular and non-vascular aquatic plant as indicators of cadmium toxicity. Chemosphere 180:86–92

    PubMed  Google Scholar 

  • Lawrence BM (2007) Mint: the genus Mentha. CRC Press, Boca Raton

    Google Scholar 

  • Li JG, Jin SL, Chen YQ, Lin GL, Han XR, Li TQ, Zhu E (2007) Effects of nitrogen fertilizer on the root morphology and cadmium accumulation in low cadmium treatment Sedum alfredii Hance. Chin Agric Sci Bull 23:260–265

    CAS  Google Scholar 

  • Li K, Yu H, Li T, Chen G, Huang F (2017) Cadmium accumulation characteristics of low-cadmium rice (Oryza sativa L.) line and F1 hybrids grown in cadmium-contaminated soils. Environ Sci Poll Res 24:17566–17576

    CAS  Google Scholar 

  • Lichtenthaler HK, Buschmann C (2001) Current protocols in food analytical chemistry. Wiley, New York

    Google Scholar 

  • Lin YL, Chao YY, Huang WD, Kao CH (2011) Effect of nitrogen deficiency on antioxidant status and Cd toxicity in rice seedlings. Plant Growth Regul 64:263–273

    CAS  Google Scholar 

  • Lindner R (1944) Rapid analytical methods for some of the more common inorganic constituents of plant tissues. Plant Physiol 19:76

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu BY, Lei CY, Liu WQ (2017) Nitrogen addition exacerbates the negative effects of low temperature stress on carbon and nitrogen metabolism in moss. Front Plant Sci. https://doi.org/10.3389/fpls.2017.01328

    Article  PubMed  PubMed Central  Google Scholar 

  • MacAdam JW, Volenec JJ, Nelson CJ (1989) Effects of nitrogen on mesophyll cell division and epidermal cell elongation in tall fescue leaf blades. Plant Physiol 89:549–556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Madhava Rao KV, Sresty TVS (2000) Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci 157:113–128

    CAS  PubMed  Google Scholar 

  • Makino A (2003) Rubisco and nitrogen relationships in rice: leaf photosynthesis and plant growth. Soil Sci Plant Nutr 49:319–327

    CAS  Google Scholar 

  • Maksymiec W, Krupa Z (2002) The in vivo and in vitro influence of methyl jasmonate on oxidative processes in Arabidopsis thaliana leaves. Acta Physiol Plant 24:351–357

    CAS  Google Scholar 

  • Marschner H (2011) Marschner’s mineral nutrition of higher plants. Academic Press, Cambridge

    Google Scholar 

  • Masood A, Iqbal N, Khan NA (2012a) Role of ethylene in alleviation of cadmium-induced photosynthetic capacity inhibition by sulphur in mustard. Plant Cell Environ 35:524–533

    CAS  PubMed  Google Scholar 

  • Masood A, Iqbal N, Khan MIR, Khan NA (2012b) The coordinated role of ethylene and glucose in sulfur-mediated protection of photosynthetic inhibition by cadmium. Plant Signal Behav 7:1420–1422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mnasri M, Ghabriche R, Fourati E, Zaier H, Sabally K, Barrington S, Ghnaya T (2015) Cd and Ni transport and accumulation in the halophyte Sesuvium portulacastrum: implication of organic acids in these processes. Front Plant Sci. https://doi.org/10.3389/fpls.2015.00156

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohammad F, Khan T, Afridi R, Fatma A (1998) Effect of nitrogen on carbonic anhydrase activity, stomatal conductance, net photosynthetic rate and yield of mustard. Photosynthetica 34:595–598

    Google Scholar 

  • Mohanty S, Swain CK, Tripathi R, Sethi SK, Bhattacharyya P, Kumar A, Gautam P (2018) Nitrate leaching, nitrous oxide emission and N use efficiency of aerobic rice under different N application strategy. Arch Agric Soil Sci 64:465–479

    CAS  Google Scholar 

  • Naeem M, Aftab T, Idrees M, Singh M, Ali A, Khan MMA, Varshney L (2017) Modulation of physiological activities, active constituents and essential oil production of Mentha arvensis L. by concomitant application of depolymerised carrageenan, triacontanol and 28-homobrassinolide. J Essen Oil Res 29:179–188

    CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nazar R, Iqbal N, Masood A, Khan MIR, Syeed S, Khan NA (2012) Cadmium toxicity in plants and role of mineral nutrients in its alleviation. Am J Plant Sci 03:1476–1489

    Google Scholar 

  • Neuberg M, Pavlíková D, Pavlík M, Balík J (2010) The effect of different nitrogen nutrition on proline and asparagine content in plant. Plant Soil Environ 56:305–311

    CAS  Google Scholar 

  • Pandey R, Agarwal R (1998) Water stress-induced changes in proline contents and nitrate reductase activity in rice under light and dark conditions. Physiol Mol Biol Plants 4:53–57

    Google Scholar 

  • Per TS, Khan NA, Masood A, Fatma M (2016) Methyl jasmonate alleviates cadmium-induced photosynthetic damages through increased S-assimilation and glutathione production in mustard. Front Plant Sci. https://doi.org/10.3389/fpls.2016.01933

    Article  PubMed  PubMed Central  Google Scholar 

  • Per TS, Khan NA, Reddy PS, Masood A, Hasanuzzaman M, Khan MIR, Anjum NA (2017) Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: phytohormones, mineral nutrients and transgenics. Plant Physiol Biochem 115:126–140

    CAS  PubMed  Google Scholar 

  • Piotrowska A, Bajguz A, Godlewska-Żyłkiewicz B, Czerpak R, Kamińska M (2009) Jasmonic acid as modulator of lead toxicity in aquatic plant Wolffia arrhiza (Lemnaceae). Environ Exp Bot 66:507–513

    CAS  Google Scholar 

  • Poonam S, Kaur H, Geetika S (2013) Effect of jasmonic acid on photosynthetic pigments and stress markers in Cajanus cajan (L.) Millsp. Seedlings under copper stress. Am J Plant Sci 04:817–823

    Google Scholar 

  • Ren B, Dong S, Zhao B, Liu P, Zhang J (2017) Responses of nitrogen metabolism, uptake and translocation of maize to waterlogging at different growth stages. Front Plant Sci. https://doi.org/10.3389/fpls.2017.01216

    Article  PubMed  PubMed Central  Google Scholar 

  • Rhodes D, Varlues PE, Sharp RE (1999) Role of amino acids in abiotic stress resistance. In: Singh BK (ed) Plant amino acids: biochemistry and biotechnology. Marcel Dekker, New York, pp 319–356

    Google Scholar 

  • Rizwan M, Ali S, Hussain A, Ali Q, Shakoor MB, Zia-ur-Rehman M, Asma M (2017a) Effect of zinc-lysine on growth, yield and cadmium uptake in wheat (Triticum aestivum L.) and health risk assessment. Chemosphere 187:35–42

    CAS  PubMed  Google Scholar 

  • Rizwan M, Ali S, Akbar MZ, Shakoor MB, Mahmood A, Ishaque W, Hussain A (2017b) Foliar application of aspartic acid lowers cadmium uptake and Cd-induced oxidative stress in rice under Cd stress. Environ Sci Poll Res 24:21938–21947

    CAS  Google Scholar 

  • Rossato L (2002) Nitrogen storage and remobilization in Brassica napus L. during the growth cycle: effects of methyl jasmonate on nitrate uptake, senescence, growth, and VSP accumulation. J Exp Bot 53:1131–1141

    CAS  PubMed  Google Scholar 

  • Roy Chowdhury S, Brahmanand PS, Manikandan N, Ambast SK (2017) Effect of N application on its utilization and gaseous exchange in cat tail (Typha elephantina) under waterlogged condition. Ind J Plant Physiol 22:263–266

    Google Scholar 

  • Ruiz-Vera UM, De Souza AP, Long SP, Ort DR (2017) The role of sink strength and nitrogen availability in the down-regulation of photosynthetic capacity in field-grown Nicotiana tabacum L. at elevated CO2 concentration. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00998

    Article  PubMed  PubMed Central  Google Scholar 

  • Saud S, Fahad S, Yajun C, Ihsan MZ, Hammad HM, Nasim W, Amanullah H, Arif M, Alharby H (2017) Effects of nitrogen supply on water stress and recovery mechanisms in kentucky bluegrass plants. Front Plant Sci 8:983. https://doi.org/10.3389/fpls.2017.00983

    Article  PubMed  PubMed Central  Google Scholar 

  • Sewelam N, Kazan K, Schenk PM (2016) Global plant stress signaling: reactive oxygen species at the cross-road. Front Plant Sci. https://doi.org/10.3389/fpls.2016.00187

    Article  PubMed  PubMed Central  Google Scholar 

  • Shah JM, Bukhari SAH, Zeng JB, Quan XY, Ali E, Muhammad N, Zhang GP (2017) Nitrogen (N) metabolism related enzyme activities, cell ultrastructure and nutrient contents as affected by N level and barley genotype. J Integr Agric 16:190–198

    CAS  Google Scholar 

  • Sharma M, Laxmi A (2016) Jasmonates: emerging players in controlling temperature stress tolerance. Front Plant Sci. https://doi.org/10.3389/fpls.2015.01129

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma SS, Schat H, Vooijs R (1998) In vitro alleviation of heavy metal-induced enzyme inhibition by proline. Phytochemistry 49:1531–1535

    CAS  PubMed  Google Scholar 

  • Sharmila P, Pardha Saradhi P (2002) Physiology and biochemistry of metal toxicity and tolerance in plants. Springer, Netherlands, pp 179–199

    Google Scholar 

  • Shen G, Niu J, Deng Z (2017) Abscisic acid treatment alleviates cadmium toxicity in purple flowering stalk Brassica campestris L. ssp. chinensis var. purpurea Hort.) seedlings. Plant Physiol Biochem 118:471–478

    CAS  PubMed  Google Scholar 

  • Siddiqui MH, Khan MN, Mohammad F, Khan MMA (2008a) Role of nitrogen and gibberellin (GA3) in the regulation of enzyme activities and in osmoprotectant accumulation in Brassica juncea L. under salt stress. J Agric Crop Sci 194:14–224

    Google Scholar 

  • Siddiqui MH, Mohammad F, Khan MN, Khan MMA (2008b) Cumulative effect of soil and foliar application of nitrogen, phosphorus, and sulfur on growth, physico-biochemical parameters, yield attributes, and fatty acid composition in oil of erucic acid-free rapeseed-mustard genotypes. J Plant Nutr 31:1284–1298

    CAS  Google Scholar 

  • Silva AJ, Nascimento CWA, Gouveia-Neto AS (2016) Assessment of cadmium phytotoxicity alleviation by silicon using chlorophyll a fluorescence. Photosynthetica 55:648–654

    Google Scholar 

  • Singh I, Shah K (2014) Exogenous application of methyl jasmonate lowers the effect of cadmium-induced oxidative injury in rice seedlings. Phytochemistry 108:57–66

    CAS  PubMed  Google Scholar 

  • Singh AP, Dixit G, Mishra S, Dwivedi S, Tiwari M, Mallick S, Tripathi RD (2015) Salicylic acid modulates arsenic toxicity by reducing its root to shoot translocation in rice (Oryza sativa L.). Front Plant Sci 6:340. https://doi.org/10.3389/fpls.2015.00340

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh M, Singh VP, Prasad SM (2016a) Responses of photosynthesis, nitrogen and proline metabolism to salinity stress in Solanum lycopersicum under different levels of nitrogen supplementation. Plant Physiol Biochem 109:72–83

    CAS  PubMed  Google Scholar 

  • Singh M, Singh VP, Prasad SM (2016b) Nitrogen modifies NaCl toxicity in eggplant seedlings: assessment of chlorophyll a fluorescence, antioxidative response and proline metabolism. Biocatal Agric Biotechnol 7:76–86

    Google Scholar 

  • Singh S, Singh A, Srivastava PK, Prasad SM (2018) Cadmium toxicity and its amelioration by kinetin in tomato seedlings vis-à-vis ascorbate-glutathione cycle. J Photochem Photobiol B 178:76–84

    CAS  PubMed  Google Scholar 

  • Sirhindi G, Mir MA, Abd-Allah EF, Ahmad P, Gucel S (2016) Jasmonic acid modulates the physio-biochemical attributes, antioxidant enzyme activity, and gene expression in Glycine max under nickel toxicity. Front Plant Sci. https://doi.org/10.3389/fpls.2016.00591

    Article  PubMed  PubMed Central  Google Scholar 

  • Srivastava RK, Pandey P, Rajpoot R, Rani A, Dubey RS (2014) Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings. Protoplasma 251:1047–1065

    CAS  PubMed  Google Scholar 

  • Su C, Jiang Y, Li F, Yang Y, Lu Q, Zhang T, Xu Q (2017) Investigation of subcellular distribution, physiological, and biochemical changes in Spirodela polyrhiza as a function of cadmium exposure. Environ Exp Bot 142:24–33

    CAS  Google Scholar 

  • Thind HS, Singh Y, Sharma S, Goyal D, Singh V, Singh B (2018) Optimal rate and schedule of nitrogen fertilizer application for enhanced yield and nitrogen use efficiency in dry-seeded rice in north-western India. Arch Agric Soil Sci 64:196–207

    Google Scholar 

  • Usuda H (1985) The activation state of ribulose 1,5-bisphosphate carboxylase in maize leaves in dark and light. Plant Cell Physiol. https://doi.org/10.1093/oxfordjournals.pcp.a077047

    Article  Google Scholar 

  • Van Rossum MW, Alberda M, van der Plas LH (1997) Role ofoxidative damage in tulip bulb scale micropropagation. Plant Sci 130:207–216

    Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Sci 151:59–66

    CAS  Google Scholar 

  • Wang SY (1999) Methyl jasmonate reduces water stress in strawberry. J Plant Growth Regul 18:127–134

    PubMed  Google Scholar 

  • Wang AG, Luo GH (1990) Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants. Plant Physiol Commun 6:55–57

    CAS  Google Scholar 

  • Wasternack C (2014) Action of jasmonates in plant stress responses and development—applied aspects. Biotechnol Adv 32:31–39

    CAS  PubMed  Google Scholar 

  • Wolucka BA, Goossens A, Inzé D (2005) Methyl jasmonate stimulates the de novo biosynthesis of vitamin C in plant cell suspensions. J Exp Bot 56:2527–2538

    CAS  PubMed  Google Scholar 

  • Xiang C (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10:1539–1550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Y, Li Y, Che Y, Deng S, Liu M (2017) Effects of biochar and nitrogen addition on nutrient and Cd uptake of Cichorium intybus grown in acidic soil. Int J Phytorem. https://doi.org/10.1080/15226514.2017.1365342

    Article  Google Scholar 

  • Yamasaki S, Dillenburg LR (1999) Measurements of leaf relative water content in Araucaria angustifolia. Rev Brasilleira Fisiol Vegetal 11:69–75

    Google Scholar 

  • Yan Z, Chen J, Li X (2013) Methyl jasmonate as modulator of Cd toxicity in Capsicum frutescens var. fasciculatum seedlings. Ecotoxicol Environ Saf 98:203–209

    CAS  PubMed  Google Scholar 

  • Yan Z, Zhang W, Chen J, Li X (2015) Methyl jasmonate alleviates cadmium toxicity in Solanum nigrum by regulating metal uptake and antioxidative capacity. Biol Plant 59:373–381

    CAS  Google Scholar 

  • Yang L, Ji J, Harris-Shultz KR, Wang H, Wang H, Abd-Allah EF, Hu X (2016) The dynamic changes of the plasma membrane proteins and the protective roles of nitric oxide in rice subjected to heavy metal cadmium stress. Front Plant Sci 7:190

    PubMed  PubMed Central  Google Scholar 

  • Zakery-Asl MA, Bolandnazara S, Oustanb S (2014) Effect of salinity and nitrogen on growth,sodium, potassium accumulation, and osmotic adjustment of halophyte Suaedaa egyptiaca (Hasselq.) Zoh. Arch Agron Soil Sci 60:785–792

    CAS  Google Scholar 

  • Zhang F, Wan X, Zheng Y, Sun L, Chen Q, Zhu X, Liu M (2014) Effects of nitrogen on the activity of antioxidant enzymes and gene expression in leaves of Populus plants subjected to cadmium stress. J Plant Interact 9:599–609

    Google Scholar 

  • Zhang F, Li J, Huang J, Lin L, Wan X, Zhao J, Chen Q (2017) Transcriptome profiling reveals the important role of exogenous nitrogen in alleviating cadmium toxicity in poplar plants. J Plant Growth Regul 36:942–956

    CAS  Google Scholar 

  • Zhao Y (2011) Cadmium accumulation and antioxidative defenses in leaves of Triticum aestivum L. and Zea mays L. Afr J Biotechnol 10:2936–2943

    CAS  Google Scholar 

Download references

Acknowledgements

AZ is thankful to UGC (New Delhi) India and Aligarh Muslim University, Aligarh India for providing the research fellowship No. BTM-2015-04-GH-7403. We are also grateful to University Sophisticated Instrumentation Facility (USIF) A.M.U., Aligarh for SEM analysis. We are also thankful to Prof. Athar Ali Khan and Prof. Aquil Ahmad from Department of Statistics and Operation Research AMU., Aligarh (India) for their help during statistical analysis.

Author information

Authors and Affiliations

Authors

Contributions

AZ designed the experiment. AZ carried out experimental analysis. AZ wrote the draft and revised the manuscript, while FM overall supervised the work.

Corresponding author

Correspondence to Abbu Zaid.

Ethics declarations

Conflict of interest

The authors declare that No conflict of interest exists.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaid, A., Mohammad, F. Methyl Jasmonate and Nitrogen Interact to Alleviate Cadmium Stress in Mentha arvensis by Regulating Physio-Biochemical Damages and ROS Detoxification. J Plant Growth Regul 37, 1331–1348 (2018). https://doi.org/10.1007/s00344-018-9854-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-018-9854-3

Keywords

Navigation