Skip to main content

Quantitative Comparison of Monte-Carlo Dropout Uncertainty Measures for Multi-class Segmentation

  • Conference paper
  • First Online:
Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis (UNSURE 2020, GRAIL 2020)

Abstract

Over the past decade, deep learning has become the gold standard for automatic medical image segmentation. Every segmentation task has an underlying uncertainty due to image resolution, annotation protocol, etc. Therefore, a number of methods and metrics have been proposed to quantify the uncertainty of neural networks mostly based on Bayesian deep learning, ensemble learning methods or output probability calibration. The aim of our research is to assess how reliable the different uncertainty metrics found in the literature are. We propose a quantitative and statistical comparison of uncertainty measures based on the relevance of the uncertainty map to predict misclassification. Four uncertainty metrics were compared over a set of 144 models. The application studied is the segmentation of the lumen and vessel wall of carotid arteries based on multiple sequences of magnetic resonance (MR) images in multi-center data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://medisimaging.com/apps/vesselmass-re/.

References

  1. Chotzoglou, E., Kainz, B.: Exploring the relationship between segmentation uncertainty, segmentation performance and inter-observer variability with probabilistic networks. In: Zhou, L., et al. (eds.) LABELS/HAL-MICCAI/CuRIOUS -2019. LNCS, vol. 11851, pp. 51–60. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33642-4_6

    Chapter  Google Scholar 

  2. Denker, J.S., LeCun, Y.: Transforming neural-net output levels to probability distributions. In: Advances in Neural Information Processing Systems, pp. 853–859 (1991)

    Google Scholar 

  3. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059 (2016)

    Google Scholar 

  4. Jungo, A., et al.: On the effect of inter-observer variability for a reliable estimation of uncertainty of medical image segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 682–690. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_77

    Chapter  Google Scholar 

  5. Kendall, A., Badrinarayanan, V., Cipolla, R.: Bayesian SegNet: model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. arXiv preprint arXiv:1511.02680 (2015)

  6. MacKay, D.J.: A practical Bayesian framework for backpropagation networks. Neural Comput. 4(3), 448–472 (1992)

    Article  Google Scholar 

  7. Makowski, D., Ben-Shachar, M., Lüdecke, D.: bayestestR: describing effects and their uncertainty, existence and significance within the Bayesian framework. J. Open Source Softw. 4(40), 1541 (2019)

    Article  Google Scholar 

  8. McElreath, R.: Statistical Rethinking: A Bayesian Course with Examples in R and Stan. CRC Press, Boca Raton (2020)

    Book  Google Scholar 

  9. Mehrtash, A., Wells III, W.M., Tempany, C.M., Abolmaesumi, P., Kapur, T.: Confidence calibration and predictive uncertainty estimation for deep medical image segmentation. arXiv preprint arXiv:1911.13273 (2019)

  10. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  11. Mobiny, A., Nguyen, H.V., Moulik, S., Garg, N., Wu, C.C.: DropConnect is effective in modeling uncertainty of Bayesian deep networks. arXiv preprint arXiv:1906.04569 (2019)

  12. Mobiny, A., Singh, A., Van Nguyen, H.: Risk-aware machine learning classifier for skin lesion diagnosis. J. Clin. Med. 8(8), 1241 (2019)

    Article  Google Scholar 

  13. Nair, T., Precup, D., Arnold, D.L., Arbel, T.: Exploring uncertainty measures in deep networks for multiple sclerosis lesion detection and segmentation. Med. Image Anal. 59, 101557 (2020)

    Article  Google Scholar 

  14. Neal, R.M.: Bayesian learning via stochastic dynamics. In: Advances in Neural Information Processing Systems, pp. 475–482 (1993)

    Google Scholar 

  15. Orlando, J.I., et al.: U2-Net: a Bayesian U-Net model with epistemic uncertainty feedback for photoreceptor layer segmentation in pathological oct scans. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1441–1445. IEEE (2019)

    Google Scholar 

  16. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8024–8035 (2019)

    Google Scholar 

  17. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  18. Sedghi, A., Kapur, T., Luo, J., Mousavi, P., Wells, W.M.: Probabilistic image registration via deep multi-class classification: characterizing uncertainty. In: Greenspan, H., et al. (eds.) CLIP/UNSURE -2019. LNCS, vol. 11840, pp. 12–22. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32689-0_2

    Chapter  Google Scholar 

  19. Seeböck, P., et al.: Exploiting epistemic uncertainty of anatomy segmentation for anomaly detection in retinal OCT. IEEE Trans. Med. Imaging 39(1), 87–98 (2019)

    Article  Google Scholar 

  20. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Truijman, M., et al.: Plaque At RISK (PARISK): prospective multicenter study to improve diagnosis of high-risk carotid plaques. Int. J. Stroke 9(6), 747–754 (2014)

    Article  Google Scholar 

  22. Van Molle, P., et al.: Quantifying uncertainty of deep neural networks in skin lesion classification. In: Greenspan, H., et al. (eds.) CLIP/UNSURE -2019. LNCS, vol. 11840, pp. 52–61. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32689-0_6

    Chapter  Google Scholar 

  23. Wang, G., Li, W., Aertsen, M., Deprest, J., Ourselin, S., Vercauteren, T.: Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks. Neurocomputing 338, 34–45 (2019)

    Article  Google Scholar 

  24. Zeiler, M.D.: ADADELTA: an adaptive learning rate method. arXiv preprint arXiv:1212.5701 (2012)

Download references

Acknowledgments

This work was funded by Netherlands Organisation for Scientific Research (NWO) VICI project VI.C.182.042. The PARISK study was funded within the framework of CTMM, the Center for Translational Molecular Medicine, project PARISK (grant 01C-202), and supported by the Dutch Heart Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robin Camarasa , Daniel Bos , Jeroen Hendrikse , Paul Nederkoorn , Eline Kooi , Aad van der Lugt or Marleen de Bruijne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Camarasa, R. et al. (2020). Quantitative Comparison of Monte-Carlo Dropout Uncertainty Measures for Multi-class Segmentation. In: Sudre, C.H., et al. Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis. UNSURE GRAIL 2020 2020. Lecture Notes in Computer Science(), vol 12443. Springer, Cham. https://doi.org/10.1007/978-3-030-60365-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60365-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60364-9

  • Online ISBN: 978-3-030-60365-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics