Advertisement

Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis

Second International Workshop, UNSURE 2020, and Third International Workshop, GRAIL 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 8, 2020, Proceedings

  • Carole H. Sudre
  • Hamid Fehri
  • Tal Arbel
  • Christian F. Baumgartner
  • Adrian Dalca
  • Ryutaro Tanno
  • Koen Van Leemput
  • William M. Wells
  • Aristeidis Sotiras
  • Bartlomiej Papiez
  • Enzo Ferrante
  • Sarah Parisot
Conference proceedings UNSURE 2020, GRAIL 2020

Part of the Lecture Notes in Computer Science book series (LNCS, volume 12443)

Also part of the Image Processing, Computer Vision, Pattern Recognition, and Graphics book sub series (LNIP, volume 12443)

Table of contents

  1. Front Matter
    Pages i-xvii
  2. UNSURE 2020

    1. Front Matter
      Pages 1-1
    2. Daniel Grzech, Bernhard Kainz, Ben Glocker, Loïc le Folgoc
      Pages 3-12
    3. Mark S. Graham, Carole H. Sudre, Thomas Varsavsky, Petru-Daniel Tudosiu, Parashkev Nachev, Sebastien Ourselin et al.
      Pages 23-31
    4. Robin Camarasa, Daniel Bos, Jeroen Hendrikse, Paul Nederkoorn, Eline Kooi, Aad van der Lugt et al.
      Pages 32-41
    5. Christian Payer, Martin Urschler, Horst Bischof, Darko Štern
      Pages 42-51
    6. Markus Lindén, Azat Garifullin, Lasse Lensu
      Pages 52-60
    7. Ka Ho Tam, Korsuk Sirinukunwattana, Maria F. Soares, Maria Kaisar, Rutger Ploeg, Jens Rittscher
      Pages 61-70
    8. Jayaraman J. Thiagarajan, Bindya Venkatesh, Deepta Rajan, Prasanna Sattigeri
      Pages 71-80
    9. Max-Heinrich Laves, Malte Tölle, Tobias Ortmaier
      Pages 81-96
    10. Arunkumar Kannan, Antony Hodgson, Kishore Mulpuri, Rafeef Garbi
      Pages 97-105
  3. GRAIL 2020

    1. Front Matter
      Pages 107-107
    2. Uğur Demir, Mohammed Amine Gharsallaoui, Islem Rekik
      Pages 109-120
    3. Xiaodan Xing, Lili Jin, Qinfeng Li, Lei Chen, Zhong Xue, Ziwen Peng et al.
      Pages 121-130
    4. Rui Sherry Shen, Jacob A. Alappatt, Drew Parker, Junghoon Kim, Ragini Verma, Yusuf Osmanlıoğlu
      Pages 131-141
    5. Karthik Gopinath, Christian Desrosiers, Herve Lombaert
      Pages 152-163
    6. Hassna Irzan, Lucas Fidon, Tom Vercauteren, Sebastien Ourselin, Neil Marlow, Andrew Melbourne
      Pages 164-173
    7. Vitalis Vosylius, Andy Wang, Cemlyn Waters, Alexey Zakharov, Francis Ward, Loic Le Folgoc et al.
      Pages 174-186
    8. Marianne de Vriendt, Philip Sellars, Angelica I. Aviles-Rivero
      Pages 187-197
    9. Simone Foti, Bongjin Koo, Thomas Dowrick, João Ramalhinho, Moustafa Allam, Brian Davidson et al.
      Pages 198-207
    10. Pushpak Pati, Guillaume Jaume, Lauren Alisha Fernandes, Antonio Foncubierta-Rodríguez, Florinda Feroce, Anna Maria Anniciello et al.
      Pages 208-219
  4. Back Matter
    Pages 221-222

About these proceedings

Introduction

This book constitutes the refereed proceedings of the Second International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, UNSURE 2020, and the Third International Workshop on Graphs in Biomedical Image Analysis, GRAIL 2020, held in conjunction with MICCAI 2020, in Lima, Peru, in October 2020. The workshops were held virtually due to the COVID-19 pandemic.

For UNSURE 2020, 10 papers from 18 submissions were accepted for publication. They focus on developing awareness and encouraging research in the field of uncertainty modelling to enable safe implementation of machine learning tools in the clinical world.

GRAIL 2020 accepted 10 papers from the 12 submissions received. The workshop aims to bring together scientists that use and develop graph-based models for the analysis of biomedical images and to encourage the exploration of graph-based models for difficult clinical problems within a variety of biomedical imaging contexts.

Keywords

artificial intelligence bioinformatics computer vision deep learning graph theory image analysis image processing image reconstruction image segmentation machine learning medical images neural networks pattern recognition signal processing

Editors and affiliations

  1. 1.University College LondonLondonUK
  2. 2.University of OxfordOxfordUK
  3. 3.McGill UniversityMontrealCanada
  4. 4.ETH ZurichZürichSwitzerland
  5. 5.Massachusetts General HospitalCharlestownUSA
  6. 6.University College LondonLondonUK
  7. 7.Technical University of DenmarkKongens LyngbyDenmark
  8. 8.Harvard Medical SchoolBostonUSA
  9. 9.Washington University School of MedicineSt. LouisUSA
  10. 10.University of OxfordOxfordUK
  11. 11.Ciudad Universitaria UNLSanta FeArgentina
  12. 12.Huawei Noah’s Ark LabLondonUK

Bibliographic information