Skip to main content

Label Propagation with Augmented Anchors: A Simple Semi-supervised Learning Baseline for Unsupervised Domain Adaptation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12349))

Included in the following conference series:

Abstract

Motivated by the problem relatedness between unsupervised domain adaptation (UDA) and semi-supervised learning (SSL), many state-of-the-art UDA methods adopt SSL principles (e.g., the cluster assumption) as their learning ingredients. However, they tend to overlook the very domain-shift nature of UDA. In this work, we take a step further to study the proper extensions of SSL techniques for UDA. Taking the algorithm of label propagation (LP) as an example, we analyze the challenges of adopting LP to UDA and theoretically analyze the conditions of affinity graph/matrix construction in order to achieve better propagation of true labels to unlabeled instances. Our analysis suggests a new algorithm of Label Propagation with Augmented Anchors (A\(^2\)LP), which could potentially improve LP via generation of unlabeled virtual instances (i.e., the augmented anchors) with high-confidence label predictions. To make the proposed A\(^2\)LP useful for UDA, we propose empirical schemes to generate such virtual instances. The proposed schemes also tackle the domain-shift challenge of UDA by alternating between pseudo labeling via A\(^2\)LP and domain-invariant feature learning. Experiments show that such a simple SSL extension improves over representative UDA methods of domain-invariant feature learning, and could empower two state-of-the-art methods on benchmark UDA datasets. Our results show the value of further investigation on SSL techniques for UDA problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We formulate in this paper both the SSL and UDA under the transductive learning setting [5].

  2. 2.

    https://github.com/Mid-Push/Moving-Semantic-Transfer-Network.

    https://github.com/kgl-prml.

References

  1. Imageclef-da dataset. http://imageclef.org/2014/adaptation/

  2. Belkin, M., Matveeva, I., Niyogi, P.: Regularization and semi-supervised learning on large graphs. In: Shawe-Taylor, J., Singer, Y. (eds.) COLT 2004. LNCS (LNAI), vol. 3120, pp. 624–638. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27819-1_43

    Chapter  MATH  Google Scholar 

  3. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 79(1–2), 151–175 (2010)

    Article  MathSciNet  Google Scholar 

  4. Ben-David, S., Blitzer, J., Crammer, K., Pereira, F.: Analysis of representations for domain adaptation. In: Advances in Neural Information Processing Systems, pp. 137–144 (2007)

    Google Scholar 

  5. Chapelle, O., Schölkopf, B., Zien, A. (eds.): Semi-Supervised Learning. The MIT Press (2006). https://doi.org/10.7551/mitpress/9780262033589.001.0001

  6. Chapelle, O., Zien, A.: Semi-supervised classification by low density separation. In: AISTATS, vol. 2005, pp. 57–64. Citeseer (2005)

    Google Scholar 

  7. Delalleau, O., Bengio, Y., Roux, N.L.: Efficient non-parametric function induction in semi-supervised learning. In: Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics (2005). http://www.gatsby.ucl.ac.uk/aistats/fullpapers/204.pdf

  8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  9. Ding, Z., Li, S., Shao, M., Fu, Y.: Graph adaptive knowledge transfer for unsupervised domain adaptation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 36–52. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_3

    Chapter  Google Scholar 

  10. Dong, W., Moses, C., Li, K.: Efficient k-nearest neighbor graph construction for generic similarity measures. In: Proceedings of the 20th International Conference on World Wide Web, pp. 577–586 (2011)

    Google Scholar 

  11. French, G., Mackiewicz, M., Fisher, M.: Self-ensembling for visual domain adaptation. In: International Conference on Learning Representations (2018)

    Google Scholar 

  12. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 1–35 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization. In: Advances in Neural Information Processing Systems, vol. 17, pp. 529–536 (2005)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. He, R., Lee, W.S., Ng, H.T., Dahlmeier, D.: Adaptive semi-supervised learning for cross-domain sentiment classification. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 3467–3476 (2018)

    Google Scholar 

  16. Hestenes, M.R., Stiefel, E., et al.: Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand. 49(6), 409–436 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hou, C.A., Tsai, Y.H.H., Yeh, Y.R., Wang, Y.C.F.: Unsupervised domain adaptation with label and structural consistency. IEEE Trans. Image Process. 25(12), 5552–5562 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hui Tang, K.C., Jia, K.: Unsupervised domain adaptation via structurally regularized deep clustering. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  19. Iscen, A., Tolias, G., Avrithis, Y., Chum, O.: Label propagation for deep semi-supervised learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5070–5079 (2019)

    Google Scholar 

  20. Iscen, A., Tolias, G., Avrithis, Y., Furon, T., Chum, O.: Efficient diffusion on region manifolds: recovering small objects with compact CNN representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2077–2086 (2017)

    Google Scholar 

  21. Joachims, T.: Transductive learning via spectral graph partitioning. In: Proceedings of the 20th International Conference on Machine Learning (ICML-03), pp. 290–297 (2003)

    Google Scholar 

  22. Kang, G., Jiang, L., Yang, Y., Hauptmann, A.G.: Contrastive adaptation network for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4893–4902 (2019)

    Google Scholar 

  23. Kumar, A., et al.: Co-regularized alignment for unsupervised domain adaptation. In: In: Advances in Neural Information Processing Systems, pp. 9345–9356 (2018)

    Google Scholar 

  24. Lee, S., Kim, D., Kim, N., Jeong, S.G.: Drop to adapt: Learning discriminative features for unsupervised domain adaptation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 91–100 (2019)

    Google Scholar 

  25. Li, J., Jing, M., Lu, K., Zhu, L., Shen, H.T.: Locality preserving joint transfer for domain adaptation. IEEE Trans. Image Process. 28(12), 6103–6115 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, Y., et al.: Learning to propagate labels: transductive propagation network for few-shot learning. arXiv preprint arXiv:1805.10002 (2018)

  27. Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adaptation networks. In: Proceedings of the 32Nd International Conference on International Conference on Machine Learning - Volume 37, ICML 2015, pp. 97–105. JMLR.org (2015). http://dl.acm.org/citation.cfm?id=3045118.3045130

  28. Long, M., Cao, Z., Wang, J., Jordan, M.I.: Conditional adversarial domain adaptation. In: Advances in Neural Information Processing Systems, pp. 1640–1650 (2018)

    Google Scholar 

  29. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with residual transfer networks. In: Advances in Neural Information Processing Systems, pp. 136–144 (2016)

    Google Scholar 

  30. Mansour, Y., Mohri, M., Rostamizadeh, A.: Domain adaptation: Learning bounds and algorithms. In: 22nd Conference on Learning Theory, COLT 2009 (2009)

    Google Scholar 

  31. Miyato, T., Maeda, S.i., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 1979–1993 (2018)

    Google Scholar 

  32. Pan, S.J., Yang, Q., et al.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  33. Peng, X., Usman, B., Kaushik, N., Hoffman, J., Wang, D., Saenko, K.: VisDA: the visual domain adaptation challenge. arXiv preprint arXiv:1710.06924 (2017)

  34. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_16

    Chapter  Google Scholar 

  35. Saito, K., Ushiku, Y., Harada, T.: Asymmetric tri-training for unsupervised domain adaptation. arXiv preprint arXiv:1702.08400 (2017)

  36. Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3723–3732 (2018)

    Google Scholar 

  37. Shen, J., Qu, Y., Zhang, W., Yu, Y.: Wasserstein distance guided representation learning for domain adaptation. In: AAAI, pp. 4058–4065 (2018)

    Google Scholar 

  38. Shu, R., Bui, H.H., Narui, H., Ermon, S.: A DIRT-T approach to unsupervised domain adaptation. arXiv preprint arXiv:1802.08735 (2018)

  39. Szummer, M., Jaakkola, T.: Partially labeled classification with Markov random walks. In: Advances in Neural Information Processing Systems, pp. 945–952 (2002)

    Google Scholar 

  40. Tang, H., Jia, K.: Discriminative adversarial domain adaptation. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, pp. 5940–5947. AAAI Press (2020)

    Google Scholar 

  41. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems, pp. 1195–1204 (2017)

    Google Scholar 

  42. Tzeng, E., Hoffman, J., Darrell, T., Saenko, K.: Simultaneous deep transfer across domains and tasks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4068–4076 (2015)

    Google Scholar 

  43. Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion: maximizing for domain invariance. arXiv preprint arXiv:1412.3474 (2014)

  44. Xie, S., Zheng, Z., Chen, L., Chen, C.: Learning semantic representations for unsupervised domain adaptation. In: International Conference on Machine Learning, pp. 5419–5428 (2018)

    Google Scholar 

  45. Yan, H., Ding, Y., Li, P., Wang, Q., Xu, Y., Zuo, W.: Mind the class weight bias: Weighted maximum mean discrepancy for unsupervised domain adaptation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 3 (2017)

    Google Scholar 

  46. Zhang, Y., Deng, B., Tang, H., Zhang, L., Jia, K.: Unsupervised multi-class domain adaptation: theory, algorithms, and practice. CoRR abs/2002.08681 (2020)

    Google Scholar 

  47. Zhang, Y., Tang, H., Jia, K., Tan, M.: Domain-symmetric networks for adversarial domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5031–5040 (2019)

    Google Scholar 

  48. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local and global consistency. In: Advances in Neural Information Processing Systems, pp. 321–328 (2004)

    Google Scholar 

  49. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local and global consistency. In: Thrun, S., Saul, L.K., Schölkopf, B. (eds.) Advances in Neural Information Processing Systems, vol. 16, pp. 321–328 (2004)

    Google Scholar 

  50. Zhou, Z.H., Li, M.: Tri-training: exploiting unlabeled data using three classifiers. IEEE Trans. Knowl. Data Eng. 17(11), 1529–1541 (2005)

    Article  Google Scholar 

  51. Zhu, X., Ghahramani, Z.: Learning from labeled and unlabeled data with label propagation. Technical report, School of Computer Science, Carnegie Mellon University (2002)

    Google Scholar 

  52. Zhu, X., Ghahramani, Z., Lafferty, J.D.: Semi-supervised learning using gaussian fields and harmonic functions. In: Proceedings of the 20th International Conference on Machine Learning (ICML-03), pp. 912–919 (2003)

    Google Scholar 

  53. Zhu, X., Lafferty, J., Rosenfeld, R.: Semi-supervised learning with graphs. Ph.D. thesis, Carnegie Mellon University, Language Technologies Institute, School of \(\ldots \) (2005)

    Google Scholar 

Download references

Acknowledgment

This work is supported in part by the Guangdong R&D key project of China (Grant No.: 2019B010155001), the National Natural Science Foundation of China (Grant No.: 61771201), and the Program for Guangdong Introducing Innovative and Enterpreneurial Teams (Grant No.: 2017ZT07X183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kui Jia .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 195 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Deng, B., Jia, K., Zhang, L. (2020). Label Propagation with Augmented Anchors: A Simple Semi-supervised Learning Baseline for Unsupervised Domain Adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12349. Springer, Cham. https://doi.org/10.1007/978-3-030-58548-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58548-8_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58547-1

  • Online ISBN: 978-3-030-58548-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics