Skip to main content

Regularization and Semi-supervised Learning on Large Graphs

  • Conference paper
Learning Theory (COLT 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3120))

Included in the following conference series:

Abstract

We consider the problem of labeling a partially labeled graph. This setting may arise in a number of situations from survey sampling to information retrieval to pattern recognition in manifold settings. It is also of potential practical importance, when the data is abundant, but labeling is expensive or requires human assistance.

Our approach develops a framework for regularization on such graphs. The algorithms are very simple and involve solving a single, usually sparse, system of linear equations. Using the notion of algorithmic stability, we derive bounds on the generalization error and relate it to structural invariants of the graph. Some experimental results testing the performance of the regularization algorithm and the usefulness of the generalization bound are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belkin, M., Niyogi, P.: Using Manifold Structure for Partially Labeled Classification. In: Advances in Neural Information Processing Systems, vol. 15, MIT Press, Cambridge (2003)

    Google Scholar 

  2. Blum, A., Chawla, S.: Learning from Labeled and Unlabeled Data using Graph Mincuts. In: ICML (2001)

    Google Scholar 

  3. Bousquet, O., Elisseeff, A.: Algorithmic Stability and Generalization Performance. In: Advances in Neural Information Processing Systems, vol. 13, pp. 196–202. MIT Press, Cambridge (2001)

    Google Scholar 

  4. Chapelle, O., Weston, J., Scholkopf, B.: Cluster Kernels for Semi-Supervised Learning. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information Processing Systems, vol. 15,

    Google Scholar 

  5. Chung, F.R.K.: Spectral Graph Theory, Regional Conference Series in Mathematics, vol . 92 (1997)

    Google Scholar 

  6. Devroye, L.P., Wagner, T.J.: Distribution-free Performance Bounds for Potential Function Rules. IEEE Trans. on Information Theory 25(5), 202–207 (1979)

    Article  MATH  Google Scholar 

  7. Fiedler, M.: Algebraic connectibity of graphs. Czechoslovak Mathematical Journal 23(98), 298–305 (1973)

    MathSciNet  Google Scholar 

  8. Harville, D.: Matrix Algebra From A Statisticinan’s Perspective. Springer, Heidelberg (1997)

    Google Scholar 

  9. Joachims, T.: Transductive Inference for Text Classification using Support Vector Machines. In: Proceedings of ICML 1999, pp. 200–209 (1999)

    Google Scholar 

  10. Kleinberg, J.M., Tardos, É.: Approximation algorithms for classification problems with pairwise relationships: metric labeling and Markov random fields. J. ACM 49(5), 616–639 (2002)

    Article  MathSciNet  Google Scholar 

  11. Kondor, I.R., Lafferty, J.: Diffusion Kernels on Graphs and Other Discrete Input Spaces. In: Proceedings of ICML (2002)

    Google Scholar 

  12. Nigam, K., McCallum, A.K., Thrun, S., Mitchell, T.: Text Classification from Labeled in Unlabeled Data. Machine Learning 39(2/3) (2000)

    Google Scholar 

  13. Smola, A. Kondor, R.: Kernels and Regularization on Graphs. COLT/KW (2003)

    Google Scholar 

  14. Szummer, M., Jaakkola, T.: Partially labeled classification with Markov random walks. In: Neural Information Processing Systems (NIPS), vol. 14 (2001)

    Google Scholar 

  15. Vapnik, V.: Statistical Learning Theory. Wiley, Chichester (1998)

    MATH  Google Scholar 

  16. Zhou, D., Bousquet, O., Lal, T.N., Weston, J. Schoelkopf, B.: Learning with Local and Global Consistency. Max Planck Institute for Biological Cybernetics Technical Report (June 2003)

    Google Scholar 

  17. Zhu, X., Lafferty, J., Ghahramani, Z.: Semi-supervised learning using Gaussian fields and harmonic functions. In: Machine Learning: Proceedings of the Twentieth International Conference (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Belkin, M., Matveeva, I., Niyogi, P. (2004). Regularization and Semi-supervised Learning on Large Graphs. In: Shawe-Taylor, J., Singer, Y. (eds) Learning Theory. COLT 2004. Lecture Notes in Computer Science(), vol 3120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27819-1_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27819-1_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22282-8

  • Online ISBN: 978-3-540-27819-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics