Skip to main content

Invertible Image Rescaling

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12346))

Included in the following conference series:

Abstract

High-resolution digital images are usually downscaled to fit various display screens or save the cost of storage and bandwidth, meanwhile the post-upscaling is adopted to recover the original resolutions or the details in the zoom-in images. However, typical image downscaling is a non-injective mapping due to the loss of high-frequency information, which leads to the ill-posed problem of the inverse upscaling procedure and poses great challenges for recovering details from the downscaled low-resolution images. Simply upscaling with image super-resolution methods results in unsatisfactory recovering performance. In this work, we propose to solve this problem by modeling the downscaling and upscaling processes from a new perspective, i.e. an invertible bijective transformation, which can largely mitigate the ill-posed nature of image upscaling. We develop an Invertible Rescaling Net (IRN) with deliberately designed framework and objectives to produce visually-pleasing low-resolution images and meanwhile capture the distribution of the lost information using a latent variable following a specified distribution in the downscaling process. In this way, upscaling is made tractable by inversely passing a randomly-drawn latent variable with the low-resolution image through the network. Experimental results demonstrate the significant improvement of our model over existing methods in terms of both quantitative and qualitative evaluations of image upscaling reconstruction from downscaled images. Code is available at https://github.com/pkuxmq/Invertible-Image-Rescaling.

M. Xiao and Y. Wang—Work done during an internship at Microsoft Research Asia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    MLEs corresponding to minimizing \(\mathrm {KL}( q(x|y), {f_\theta ^{-1}(y, \cdot )}_\# [p(z)] )\) or \(\mathrm {KL}\Big ( q(x), \Big ( \mathbb {E}_{{f_\theta ^y}_\# [q(x)]} [f_\theta ^{-1}(y, \cdot )] \Big )_\# [p(z)] \Big )\) are also impossible, since the pushed-forward distributions have a.e. zero density in \(\mathcal {X}\) so the KL is a.e. infinite.

References

  1. Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution: dataset and study. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 126–135 (2017)

    Google Scholar 

  2. Agustsson, E., Tschannen, M., Mentzer, F., Timofte, R., Gool, L.V.: Generative adversarial networks for extreme learned image compression. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 221–231 (2019)

    Google Scholar 

  3. Ardizzone, L., et al.: Analyzing inverse problems with invertible neural networks. In: Proceedings of the International Conference on Learning and Representations (2019)

    Google Scholar 

  4. Ardizzone, L., Lüth, C., Kruse, J., Rother, C., Köthe, U.: Guided image generation with conditional invertible neural networks. arXiv preprint arXiv:1907.02392 (2019)

  5. Arjovsky, M., Bottou, L.: Towards principled methods for training generative adversarial networks. In: Proceedings of the International Conference on Learning and Representations (2017)

    Google Scholar 

  6. Ballé, J., Laparra, V., Simoncelli, E.P.: End-to-end optimized image compression. arXiv preprint arXiv:1611.01704 (2016)

  7. Ballé, J., Minnen, D., Singh, S., Hwang, S.J., Johnston, N.: Variational image compression with a scale hyperprior. arXiv preprint arXiv:1802.01436 (2018)

  8. Behrmann, J., Grathwohl, W., Chen, R.T., Duvenaud, D., Jacobsen, J.H.: Invertible residual networks. In: International Conference on Machine Learning, pp. 573–582 (2019)

    Google Scholar 

  9. Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432 (2013)

  10. Berg, R., Hasenclever, L., Tomczak, J.M., Welling, M.: Sylvester normalizing flows for variational inference. In: Proceedings of the Conference on Uncertainty in Artificial Intelligence (2018)

    Google Scholar 

  11. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding (2012)

    Google Scholar 

  12. Bruckstein, A.M., Elad, M., Kimmel, R.: Down-scaling for better transform compression. IEEE Trans. Image Process. 12(9), 1132–1144 (2003)

    Article  MathSciNet  Google Scholar 

  13. Chen, R.T., Behrmann, J., Duvenaud, D., Jacobsen, J.H.: Residual flows for invertible generative modeling. arXiv preprint arXiv:1906.02735 (2019)

  14. Dai, T., Cai, J., Zhang, Y., Xia, S.T., Zhang, L.: Second-order attention network for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11065–11074 (2019)

    Google Scholar 

  15. Dinh, L., Krueger, D., Bengio, Y.: NICE: non-linear independent components estimation. In: Workshop of the International Conference on Learning Representations (2015)

    Google Scholar 

  16. Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using real NVP. In: Proceedings of the International Conference on Learning Representations (2017)

    Google Scholar 

  17. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2015)

    Article  Google Scholar 

  18. Freedman, G., Fattal, R.: Image and video upscaling from local self-examples. ACM Trans. Graph. (TOG) 30(2), 12 (2011)

    Article  Google Scholar 

  19. Giachetti, A., Asuni, N.: Real-time artifact-free image upscaling. IEEE Trans. Image Process. 20(10), 2760–2768 (2011)

    Article  MathSciNet  Google Scholar 

  20. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 349–356. IEEE (2009)

    Google Scholar 

  21. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, Montréal, Canada, pp. 2672–2680. NIPS Foundation (2014)

    Google Scholar 

  22. Grathwohl, W., Chen, R.T., Betterncourt, J., Sutskever, I., Duvenaud, D.: FFJORD: free-form continuous dynamics for scalable reversible generative models. In: Proceedings of the International Conference on Learning and Representations (2019)

    Google Scholar 

  23. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5197–5206 (2015)

    Google Scholar 

  24. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: Proceedings of the IEEE International Conference on Computer Vision, Kyoto, Japan, pp. 349–356 (2009)

    Google Scholar 

  25. Jacobsen, J.H., Smeulders, A.W., Oyallon, E.: i-RevNet: deep invertible networks. In: International Conference on Learning Representations (2018)

    Google Scholar 

  26. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  27. Kim, H., Choi, M., Lim, B., Mu Lee, K.: Task-aware image downscaling. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 419–434. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_25

    Chapter  Google Scholar 

  28. Kim, K.I., Kwon, Y.: Single-image super-resolution using sparse regression and natural image prior. IEEE Trans. Pattern Anal. Mach. Intell. 32(6), 1127–1133 (2010)

    Article  Google Scholar 

  29. Kingma, D.P., Dhariwal, P.: Glow: generative flow with invertible 1x1 convolutions. In: Advances in Neural Information Processing Systems, pp. 10215–10224 (2018)

    Google Scholar 

  30. Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow. In: Advances in Neural Information Processing Systems, pp. 4743–4751 (2016)

    Google Scholar 

  31. Kopf, J., Shamir, A., Peers, P.: Content-adaptive image downscaling. ACM Trans. Graph. (TOG) 32(6), 173 (2013)

    Google Scholar 

  32. Kumar, M., et al.: VideoFlow: a flow-based generative model for video. arXiv preprint arXiv:1903.01434 (2019)

  33. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)

    Google Scholar 

  34. Li, Y., Liu, D., Li, H., Li, L., Li, Z., Wu, F.: Learning a convolutional neural network for image compact-resolution. IEEE Trans. Image Process. 28(3), 1092–1107 (2018)

    Article  MathSciNet  Google Scholar 

  35. Li, Z., Li, S., Zhang, N., Wang, L., Xue, Z.: Multi-scale invertible network for image super-resolution. In: Proceedings of the ACM Multimedia Asia, pp. 1–6 (2019)

    Google Scholar 

  36. Lienhart, R., Maydt, J.: An extended set of Haar-like features for rapid object detection. In: Proceedings of the International Conference on Image Processing, vol. 1, p. I. IEEE (2002)

    Google Scholar 

  37. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 136–144 (2017)

    Google Scholar 

  38. Lin, W., Dong, L.: Adaptive downsampling to improve image compression at low bit rates. IEEE Trans. Image Process. 15(9), 2513–2521 (2006)

    Article  Google Scholar 

  39. Liu, J., He, S., Lau, R.W.: \(l\_\{0\}\)-regularized image downscaling. IEEE Trans. Image Process. 27(3), 1076–1085 (2017)

    Article  MathSciNet  Google Scholar 

  40. Martin, D., Fowlkes, C., Tal, D., Malik, J., et al.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV, Vancouver (2001)

    Google Scholar 

  41. Minnen, D., Ballé, J., Toderici, G.D.: Joint autoregressive and hierarchical priors for learned image compression. In: Advances in Neural Information Processing Systems, pp. 10771–10780 (2018)

    Google Scholar 

  42. Mitchell, D.P., Netravali, A.N.: Reconstruction filters in computer-graphics. ACM SIGGRAPH Comput. Graph. 22(4), 221–228 (1988)

    Article  Google Scholar 

  43. Oeztireli, A.C., Gross, M.: Perceptually based downscaling of images. ACM Trans. Graph. (TOG) 34(4), 77 (2015)

    Google Scholar 

  44. van der Ouderaa, T.F., Worrall, D.E.: Reversible GANs for memory-efficient image-to-image translation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4720–4728 (2019)

    Google Scholar 

  45. Rezende, D., Mohamed, S.: Variational inference with normalizing flows. In: Proceedings of the International Conference on Machine Learning, pp. 1530–1538 (2015)

    Google Scholar 

  46. Rippel, O., Bourdev, L.: Real-time adaptive image compression. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 2922–2930. JMLR.org (2017)

    Google Scholar 

  47. Schulter, S., Leistner, C., Bischof, H.: Fast and accurate image upscaling with super-resolution forests. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3791–3799 (2015)

    Google Scholar 

  48. Shannon, C.E.: Communication in the presence of noise. Proc. IRE 37(1), 10–21 (1949)

    Article  MathSciNet  Google Scholar 

  49. Shen, M., Xue, P., Wang, C.: Down-sampling based video coding using super-resolution technique. IEEE Trans. Circ. Syst. Video Technol. 21(6), 755–765 (2011)

    Article  Google Scholar 

  50. Sun, W., Chen, Z.: Learned image downscaling for upscaling using content adaptive resampler. IEEE Trans. Image Process. 29, 4027–4040 (2020)

    Article  Google Scholar 

  51. Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 63–79. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_5

    Chapter  Google Scholar 

  52. Wang, Y., Xiao, M., Liu, C., Zheng, S., Liu, T.Y.: Modeling lost information in lossy image compression. arXiv preprint arXiv:2006.11999 (2020)

  53. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  54. Weber, N., Waechter, M., Amend, S.C., Guthe, S., Goesele, M.: Rapid, detail-preserving image downscaling. ACM Trans. Graph. (TOG) 35(6), 205 (2016)

    Article  Google Scholar 

  55. Wilson, P.I., Fernandez, J.: Facial feature detection using Haar classifiers. J. Comput. Sci. Coll. 21(4), 127–133 (2006)

    Google Scholar 

  56. Wu, X., Zhang, X., Wang, X.: Low bit-rate image compression via adaptive down-sampling and constrained least squares upconversion. IEEE Trans. Image Process. 18(3), 552–561 (2009)

    Article  MathSciNet  Google Scholar 

  57. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010)

    Article  MathSciNet  Google Scholar 

  58. Yeo, H., Do, S., Han, D.: How will deep learning change internet video delivery? In: Proceedings of the 16th ACM Workshop on Hot Topics in Networks, pp. 57–64. ACM (2017)

    Google Scholar 

  59. Yeo, H., Jung, Y., Kim, J., Shin, J., Han, D.: Neural adaptive content-aware internet video delivery. In: 13th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2018, pp. 645–661 (2018)

    Google Scholar 

  60. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27413-8_47

    Chapter  Google Scholar 

  61. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 294–310. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_18

    Chapter  Google Scholar 

  62. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2472–2481 (2018)

    Google Scholar 

  63. Zhong, Z., Shen, T., Yang, Y., Lin, Z., Zhang, C.: Joint sub-bands learning with clique structures for wavelet domain super-resolution. In: Advances in Neural Information Processing Systems, pp. 165–175 (2018)

    Google Scholar 

  64. Zhu, X., Li, Z., Zhang, X.Y., Li, C., Liu, Y., Xue, Z.: Residual invertible spatio-temporal network for video super-resolution. Proc. AAAI Conf. Artif. Intell. 33, 5981–5988 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuxin Zheng or Chang Liu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 15621 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiao, M. et al. (2020). Invertible Image Rescaling. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12346. Springer, Cham. https://doi.org/10.1007/978-3-030-58452-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58452-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58451-1

  • Online ISBN: 978-3-030-58452-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics