Skip to main content

Volcanic Debris Avalanche Transport and Emplacement Mechanisms

  • Chapter
  • First Online:
Volcanic Debris Avalanches

Part of the book series: Advances in Volcanology ((VOLCAN))

Abstract

Field observations of volcanic debris avalanche (VDA) morphology, sedimentology, and structural features have inspired several hypotheses on their dynamic behaviour. These include plug flow, translational slide, and sliding along multiple shear zones, none of which involve large-scale turbulence during transport. The plug flow model shows normal gradation in the plug, and reverse grading in the laminar boundary layers. During translational sliding, spreading of the mass is accommodated by listric normal faults that flatten into a main sliding plane at the base of or within the avalanche body. Multiple shear zones include progressive fragmentation within the avalanching mass, resulting in pockets of shear and slip. We present case studies for each model and hypotheses for the formation of flowbands on the deposit surface. Processes involved during emplacement include disintegration, dynamic fragmentation, and matrix injection. Near the base, bulldozing and incorporation of substrata change the composition and behaviour of the VDA. In extreme cases, VDAs transform into lahars if sufficient water is available for entrainment. Post-emplacement, lahars can also happen, e.g., through debris dewatering, loading of saturated substrata or in the case of landslide dam failure. VDA also create secondary slides when deflected by topographic barriers or when the margins are oversteepened.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anders MH, Aharonov E, Walsh JJ (2000) Stratified granular media beneath large slide blocks: implications for mode of emplacement. Geology 28(11):971–974

    Article  Google Scholar 

  • Andrade SD, van Wyk de Vries B (2010) Structural analysis of the early stages of catastrophic stratovolcano flank-collapse using analogue models. Bull Volcanol 72:771–789

    Google Scholar 

  • Aranson IS, Malloggi F, Clément E (2006) Transverse instability of avalanches in granular flows down an incline. Phys Rev E Stat Nonlinear Soft Matter Phys 73(5):4

    Google Scholar 

  • Barbolini M, Biancardi A, Cappabianca F, Natale L, Pagliardi M (2005) Laboratory study of erosion process in snow avalanches. Cold Reg Sci Technol 43:1–9

    Article  Google Scholar 

  • Belousov A, Belousova M, Voight B (1999) Multiple edifice failures, debris avalanches and associated eruptions in the Holocene history of Shiveluch volcano, Kamchatka, Russia. Bull Volcanol 61:324–342

    Article  Google Scholar 

  • Bernard B, van Wyk de Vries B, Barba D, Leyrit H, Robin C, Alcaraz S, Samaniego P (2008) The Chimborazo sector collapse and debris avalanche: deposit characteristics as evidence of emplacement mechanisms. J Volcanol Geotherm Res 176:36–43

    Google Scholar 

  • Bernard B, van Wyk de Vries B, Leyrit H (2009) Distinguishing volcanic debris avalanche deposits from their reworked products: the Perrier sequence (French Massif Central). Bull Volcanol 71:1041–1056

    Google Scholar 

  • Bernard K, Thouret J-C, van Wyk de Vries B (2017) Emplacement and transformations of volcanic debris avalanches—a case study at El Misti volcano, Peru. J Volcanol Geotherm Res 340:68–91

    Google Scholar 

  • Bernard B, Takarada S, Andrade D, Dufresne A (2020) Terminology and strategy to describe volcanic landslides and debris avalanches. In: Roverato M, Dufresne A, Procter JN (eds) Volcanic debris avalanches: from collapse to hazard. Springer book series advances in volcanology (this volume)

    Google Scholar 

  • Borgia A, van Wyk de Vries B (2003) The volcano-tectonic evolution of Concepción, Nicaragua. Bull Volcanol 65:248–266

    Google Scholar 

  • Borgia A, Ferrari L, Pasquare G (1992) Importance of gravitational spreading in the tectonic and volcanic evolution of Mount Etna. Nature 357:231

    Article  Google Scholar 

  • Caballero L, Capra L (2011) Textural analysis of particles from El Zaguán debris avalanche deposit, Nevado de Toluca Volcano, Mexico: Evidence of flow behavior during emplacement. J Volcanol Geotherm Res 200:75–82

    Article  Google Scholar 

  • Campbell CS, Cleary PW, Hopkins M (1995) Large-scale landslide simulations: global deformation, velocities and basal friction. J Geophys Res 100:8267–8273

    Article  Google Scholar 

  • Capra L, Macias JL (2002a) The cohesive Naranjo debris-flow deposit (10 km3): a dam breakout flow derived from the Pleistocene debris-avalanche deposit of Nevado de Colima (Mexico). J Volcanol Geotherm Res 117:213–235

    Article  Google Scholar 

  • Capra L, Macias JL (2002b) Pleistocene cohesive debris flows at Nevado de Toluca Volcano, central Mexico. J Volcanol Geotherm Res 102:149–167

    Article  Google Scholar 

  • Capra L, Macias J, Scott K, Abrams M (2002) Debris avalanches and debris flows transformed from collapses in the Trans-Mexican Volcanic Belt, Mexico–behavior, and implications for hazard assessment. J Volcanol Geotherm Res 113(1–2):81–110

    Article  Google Scholar 

  • Cassie JW, Van Gassen W, Cruden DM (1988) Laboratory analogue of the formation of molards, cones of rock- avalanche debris. Geology 16:735–738

    Article  Google Scholar 

  • Cecchi E, van Wyk de Vries B, Lavest JM (2005) Flank spreading and collapse of weak-cored volcanoes. Bull Volcanol 67:72–91

    Google Scholar 

  • Clavero J, Sparks R, Huppert H, Dade W (2002) Geological constraints on the emplacement mechanism of the Parinacota debris avalanche, Northern Chile. Bull Volcanol 64:40–54

    Article  Google Scholar 

  • Cleary PW, Campbell CS (1993) Self-lubrication for long runout landslides: examination by computer simulation. J Geophys Res Solid Earth 98:21911–21924

    Article  Google Scholar 

  • Collins GS, Melosh HJ (2003) Acoustic fluidization and the extraordinary mobility of sturzstroms. J Geophys Res Solid Earth 108(B10):1–14

    Article  Google Scholar 

  • Davies T (1982) Spreading of rock avalanche debris by mechanical fluidization. Rock Mech Felsmechanik Mécanique des Roches 15:9–24

    Article  Google Scholar 

  • Davies T, McSaveney MJ, Kelfoun K (2010) Runout of the Socompa volcanic debris avalanche, Chile: a mechanical explanation for low basal shear resistance. Bull Volcanol 72:933–944

    Article  Google Scholar 

  • Davies T, Reznichenko NV, McSaveney MJ (2019a) Energy budget for a rock avalanche: fate of fracture-surface energy. Landslides 17(1):3–13

    Article  Google Scholar 

  • Davies T, McSaveney MJ, Reznichenko NV (2019b) What happens to fracture energy in brittle fracture? Revisiting the Griffith assumption. Solid Earth 10(1385–1395)

    Google Scholar 

  • Delcamp A, Delvaux D, Kwelwa S, Macheyeki A, Kervyn M (2016a) Sector collapse events at volcanoes in the North Tanzanian divergence zone and their implications for regional tectonics. Bull Geol Soc Am 128:169–186

    Google Scholar 

  • Delcamp A, Roberti G, van Wyk de Vries B (2016b) Water in volcanoes: evolution, storage and rapid release during landslides. Bull Volcanol 78

    Google Scholar 

  • Donnadieu F, Merle O (1998) Experiments on the identation process during cryptodome intrusions: new insights into Mount St. Helens deformation. Geology 26:79–82

    Article  Google Scholar 

  • Dufresne A (2009) Influence of runout path material on rock and debris avalanche mobility: field evidence and analogue modelling. Dissertation. University of Canterbury, Christchurch, New Zealand, p 272

    Google Scholar 

  • Dufresne A, Davies T (2009) Longitudinal ridges in mass movement deposits. Geomorphology 105:171–181

    Article  Google Scholar 

  • Dufresne A, Geertsema M (2020) Rock slide-debris avalanches: flow transformation and hummock formation, examples from British Columbia. Landslides 17:15–32

    Article  Google Scholar 

  • Dufresne A, Zernack AV, Bernard K, Thouret J-C, Roverato M (2020) Sedimentology of volcanic debris avalanche deposits. In: Roverato M, Dufresne A, Procter JN (edd) Volcanic debris avalanches: from collapse to hazard. Springer book series advances in volcanology (this volume)

    Google Scholar 

  • Elsworth D, Voight B (1996) Evaluation of volcano flank instability triggered by dyke intrusion. Geol Soc London Spec Publ 110:45–53

    Article  Google Scholar 

  • Francis PW, Wells GL (1988) Landsat Thematic Mapper observations of debris avalanche deposits in the Central Andes. Bull Volcanol 50:258–278

    Article  Google Scholar 

  • Friele PA, Clague JJ (2004) Large holocene landslides from Pylon Peak, British Columbia. Can J Earth Sci 41:165–182

    Article  Google Scholar 

  • Glicken H (1991) Sedimentary architecture of large volcanic debris avalanches. In: Smith GA, Fisher RV (eds) Sedimentation in volcanic settings, Society for Sedimentary Geology (SEPM), pp 99–106

    Google Scholar 

  • Glicken H (1996) Rockslide-debris avalanche of May 18, 1980, Mount St. Helens Volcano, Washington. Bull Geol Soc Jpn 49:55–106

    Google Scholar 

  • Gray JMNT, Kokelaar BP (2010) Large particle segregation, transport and accumulation in granular free-surface flows. J Fluid Mech 652:105–137

    Article  Google Scholar 

  • Guthrie RH, Friele P, Allstadt K, Roberts N, Evans SG, Delaney KB, Roche D, Clague JJ, Jakob M (2012) The 6 August 2010 Mount Meager rock slide-debris flow, Coast Mountains, British Columbia: Characteristics, dynamics, and implications for hazard and risk assessment. Nat Haz Earth Syst Sci 12:1277–1294

    Article  Google Scholar 

  • Hayakawa YS, Yoshida H, Obanawa H, Naruhashi R, Okumura K, Zaiki M, Kontani R (2018) Characteristics of debris avalanche deposits inferred from source volume estimate and hummock morphology around Mt. Erciyes, central Turkey. Nat Haz Earth Syst Sci 18:429–444

    Article  Google Scholar 

  • Howard KA (1973) Avalanche mode of motion: implications from lunar examples. Science 180:1052–1055

    Article  Google Scholar 

  • Hughes CJ (1970) The heart mountain detachment fault—a volcanic phenomenon? J Geology 78:107–116

    Article  Google Scholar 

  • Hsü KJ (1975) Catastrophic debris stream (Sturzstroms) generated by rockfalls. Geol Soc American Bulletin 86:129–140

    Article  Google Scholar 

  • Johnson CG, Kokelaar BP, Iverson RM, Logan M, Lahusen RG, Gray JMNT (2012) Grain-size segregation and levee formation in geophysical mass flows. J Geophys Res Earth Surf 117:1–23

    Article  Google Scholar 

  • Kelfoun K, Druitt T (2005) Numerical modeling of the emplacement of Socompa rock avalanche, Chile. J Geophys Res Solid Earth 110(12):1–13

    Google Scholar 

  • Kelfoun K, Druitt T, van Wyk de Vries B, Guilbaud MN (2008) Topographic reflection of the Socompa debris avalanche, Chile. Bull Volcanol 70:1169–1187

    Google Scholar 

  • Lagmay AMFA, van Wyk de Vries B, Kerle N, Pyle DM (2000) Volcano instability induced by strike-slip faulting. Bull Volcanol 62:331–346

    Google Scholar 

  • Legros F, Cantagrel J, Devouard B (2002) Pseudotachylyte (Frictionite) at the base of the arequipa volcanic landslide deposit (Peru): implications for emplacement mechanisms. J Geol 108:601–611

    Article  Google Scholar 

  • Leyrit H (2000) Flank collapse and debris avalanche deposits. In: Montenat C, Leyrit H (eds) Volcaniclastic rocks from magmas to sediments. Gordon and Breach Science Publishers, pp 111–129

    Google Scholar 

  • Malloggi F, Lanuza J, Andreotti B, Clément E (2008) Erosion waves: transverse instabilities and fingering. Europhys Lett 75:825–831

    Article  Google Scholar 

  • McGuire WJ (1996) Volcano instability: a review of contemporary themes. Geol Soc London Spec Publ 110:1–23

    Article  Google Scholar 

  • McSaveney MJ (1978) Sherman glacier rock avalanche, Alaska, USA. In: Voight B (ed) Natural phenomena. Rockslides and avalanches, vol. 1. Elsevier, New York, pp 197–258

    Google Scholar 

  • Melosh HJ (1979) Acoustic fluidization: a new geologic process? J Geophys Res 84(B13):7513–7520

    Article  Google Scholar 

  • Melosh J (1987) The mechanics of large rock avalanches. Rev. Eng Geol VII:41–50

    Google Scholar 

  • Melosh J (2015) Acoustic fluidization: what it is, and is not. Bridg Gap III:1004

    Google Scholar 

  • Montalto A, Vinciguerra S, Menza S, Patane G (1996) Recent seismicity of Mount Etna: implications for flank instability. Volcano Instab Earth Other Planets 110:169–177

    Google Scholar 

  • Naranjo JA, Francis PW (1987) High velocity debris avalanche at Lastarria volcano in the north Chilean Andes. Bull Volcanol 49:509–514

    Article  Google Scholar 

  • Paguican, EM (2012) The structure, morphology, and surface texture of debris avalanche deposits: field and remote sensing mapping and analogue modelling. Dissertation, Université Blaise Pascal

    Google Scholar 

  • Paguican EM, van Wyk de Vries B, Lagmay AMFA (2012) Volcano-tectonic controls and emplacement kinematics of the Iriga debris avalanches (Philippines). Bull Volcanol 74:2067–2081

    Google Scholar 

  • Paguican EM, van Wyk de Vries B, Lagmay AMFA (2014) Hummocks: how they form and how they evolve in rockslide-debris avalanches. Landslides 11:67–80

    Google Scholar 

  • Palmer BA, Neall VE (1991) Contrasting lithofacies architecture in ring-plain deposits related to edifice construction and destruction, the Quaternary Stratford and Opunake Formations, Egmont Volcano, New Zealand. Sediment Geol 74:71–88

    Article  Google Scholar 

  • Palmer BA, Alloway BV, Neall VE (1991) Volcanic debris-avalanche deposits in New Zealand—Lithofacies organization in unconfined, wet avalanche flows. In: Fisher RV, Smith GA (eds) Sedimentation in volcanic settings. Society for sedimentary geology (SEPM) special publications, vol 45, pp 89–98

    Google Scholar 

  • Perinotto H, Jean-Luc S, Bachelery P, Le Bourdonnec F-X, Famin V, Michon L (2015) The extreme mobility of debris avalanches: A new model of transport mechanism. J Geophys Res Solid Earth 120(8110–8119):2212–2219

    Google Scholar 

  • Pouliquen O, Vallance JW (1999) Segregation induced instabilities of granular fronts. Chaos 9:621–630

    Article  Google Scholar 

  • Pouliquen O, Delour J, Savage SB (1997) Fingering in granular flows. Nature 386:816–817

    Article  Google Scholar 

  • Pudasaini SP, Miller SA (2013) The hypermobility of huge landslides and avalanches. Eng Geol 157:124–132

    Article  Google Scholar 

  • Reiche P (1937) The Toreva block, a distinctive landslide type. J Geol 45(5):538–548

    Article  Google Scholar 

  • Reid ME, Sisson TW, Brien DL (2001) Volcano collapse promoted by hydrothermal alteration and edifice shape, Mount Rainier, Washington. Geology 29:779–782

    Article  Google Scholar 

  • Roverato M, Capra L, Sulpizio R, Norini G (2011) Stratigraphic reconstruction of two debris avalanche deposits at Colima Volcano (Mexico): Insights into pre-failure conditions and climate influence. J Volcanol Geotherm Res 207:33–46

    Article  Google Scholar 

  • Roverato M, Cronin S, Procter J, Capra L (2015) Textural features as indicators of debris avalanche transport and emplacement, Taranaki volcano. Bull Geol Soc Am 127:3–18

    Article  Google Scholar 

  • Roverato M, Larrea P, Casado I, Mulas M, Béjar G, Bowman L (2018) Characterization of the Cubilche debris avalanche deposit, a controversial case from the northern Andes, Ecuador. J Volcanol Geotherm Res 360:22–35

    Article  Google Scholar 

  • Roverato M, Di Traglia F, Procter JN, Paguican EMR, Dufresne A (2020) Factors contributing to volcano lateral collapse. In: Roverato M, Dufresne A, Procter JN (eds) Volcanic debris avalanches: from collapse to hazard. Springer book series advances in volcanology (this volume)

    Google Scholar 

  • Samaniego P, Valderrama P, Mariño J, van Wyk de Vries B, Roche O, Manrique N, Chédeville C, Liorzou C, Fidel L, Malnati J (2015) The historical (218 ±14 aBP) explosive eruption of Tutupaca volcano (Southern Peru). Bull Volcanol 77:1–18

    Google Scholar 

  • Scheidegger AE (1973) On the prediction of the reach and velocity of catastrophic landslides. Rock Mech 5:231–236

    Article  Google Scholar 

  • Scott KM, Macias JL, Naranjo JA, Rodriguez S, McGeehin JP (2001) Catastrophic debris flows transformed from landslides in volcanic terrains: mobility, hazard assessment, and mitigation strategies. U.S. geological survey professional paper, vol 1630, 59pp

    Google Scholar 

  • Shea T, van Wyk de Vries B (2008) Structural analysis and analogue modeling of the kinematics and dynamics of rockslide avalanches. Geosphere 4:657–686

    Google Scholar 

  • Shea T, van Wyk de Vries B, Pilato M (2008) Emplacement mechanisms of contrasting debris avalanches at Volcán Mombacho (Nicaragua), provided by structural and facies analysis. Bull Volcanol 70:899–921

    Google Scholar 

  • Siebe C, Komorowski J, Sheridan MF (1992) Morphology and emplacement of an unusual debris-avalanche deposit at Jocotitlán volcano, Central Mexico. Bull Volcanol 54:573–589

    Google Scholar 

  • Siebert L (1984) Large volcanic debris avalanches: characteristics of source areas, deposits, and associated eruptions. J Volcanol Geotherm Res 22:163–197

    Article  Google Scholar 

  • Siebert L, Roverato M (2020) A historical perspective on lateral collapse and debris avalanches. In: Roverato M, Dufresne A, Procter JN (eds) Volcanic debris avalanches: from collapse to hazard. Springer book series advances in volcanology (this volume)

    Google Scholar 

  • Siebert L, Glicken H, Ui T (1987) Volcanic hazards from Bezymianny- and Bandai-type eruptions. Bull Volcanol 49:435–459

    Article  Google Scholar 

  • Smith GA, Lowe DR (1991) Lahars: volcano-hydrologic events and deposition in the debris flow—hyperconcentrated flow continuum. In: Fisher RV, Smith GA (eds) Sedimentation in volcanic settings. Society of economic paleontologists and mineralogists. Special publications, vol 45, pp 59–70

    Google Scholar 

  • Sovilla B, Burlando P, Bartelt P (2006) Field experiments and numerical modeling of mass entrainment in snow avalanches. J Geophys Res 111:F03007

    Google Scholar 

  • Takarada S, Ui T, Yamamoto Y (1999) Depositional features and transportation mechanism of valley-filling Iwasegawa and Kaida debris avalanches. Japan Bull Volcanol 60:508–522

    Article  Google Scholar 

  • Tavares L, King R (1998) Single-particle fracture under impact loading. Int J Miner Process 54(1):1–28

    Article  Google Scholar 

  • Thompson, N (2009) Distinct element numerical modelling of volcanic debris avalanche emplacement geomechanics. Dissertation, Bournemouth University

    Google Scholar 

  • Tibaldi A (2001) Multiple sector collapses at Stromboli volcano, Italy: how they work. Bull Volcanol 63:112–125

    Article  Google Scholar 

  • Tibaldi A (2005) Volcanism in compressional tectonic settings: is it possible? Geophys Res Lett 32:1–4

    Article  Google Scholar 

  • Tost M, Cronin SJ, Procter JN (2014) Transport and emplacement mechanisms of channelised long-runout debris avalanches, Ruapehu volcano, New Zealand. Bull Volcanol 76:881

    Article  Google Scholar 

  • Ui T (1983) Volcanic dry avalanche deposits—identification and comparison with nonvolcanic debris stream deposits. J Volcanol Geotherm Res 18:135–150

    Article  Google Scholar 

  • Ui T, Yamamoto H, Suzuki-Kamata K (1986) Characterization of debris avalanche deposits in Japan. J Volcanol Geotherm Res 29:231–243

    Article  Google Scholar 

  • Valderrama P, Roche O, Samaniego P, van Wyk de Vries B, Bernard K, Mariño J (2016) Dynamic implications of ridges on a debris avalanche deposit at Tutupaca volcano (southern Peru). Bull Volcanol 78(2):14

    Google Scholar 

  • Valderrama P, Roche O, Samaniego P, van Wyk de Vries B, Araujo G (2018) Granular fingering as a mechanism for ridge formation in debris avalanche deposits: laboratory experiments and implications for Tutupaca volcano, Peru. J Volcanol Geotherm Res 349:409–418

    Google Scholar 

  • Vallance JW (2000) Lahars. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, pp 601–616

    Google Scholar 

  • van Wyk de Vries B, Davies T (2015) Landslides, debris avalanches, and volcanic gravitational deformation. In: Sigurdsson H (ed) The encyclopedia of volcanoes, 2nd edn. Elsevier Inc., pp 665–685

    Google Scholar 

  • van Wyk de Vries B, Francis PW (1997) Catastrophic collapse at stratovolcanoes induced by gradual volcano spreading. Nature 387:387–390

    Google Scholar 

  • van Wyk de Vries B, Kerle N, Petley D (2000) Sector collapse forming at Casita volcano, Nicaragua. Geology 28:167–170

    Google Scholar 

  • van Wyk de Vries B, Self S, Francis PW, Keszthelyi L (2001) A gravitational spreading origin for the Socompa debris avalanche. J Volcanol Geotherm Res 105:225–247

    Google Scholar 

  • Vidal N, Merle O (2000) Reactivation of basement faults beneath volcanoes: a new model of flank collapse. J Volcanol Geotherm Res 99:9–26

    Google Scholar 

  • Voight B, Elsworth D (1997) Failure of Volcano Slopes. Géotechnique 47:1–31

    Article  Google Scholar 

  • Voight B, Glicken H, Janda RJ, Douglass PM (1981) Catastrophic rockslide avalanche of May 18. In: Lipman PW, Mullineaux DR (eds) The 1980 eruptions of Mount St. Helens, Washington, U.S. geological survey professional papers, vol 1250, pp 347–377

    Google Scholar 

  • Voight B, Janda RJ, Glicken H, Douglass PM (1983) Discussion: nature and mechanics of the Mount St Helens rockslide-avalanche of 18 May 1980. Géotechnique 35:357–368

    Article  Google Scholar 

  • Wadge G, Francis PW, Ramirez CF (1995) The Socompa collapse and avalanche event. J Volcanol Geotherm Res 66:309–336

    Article  Google Scholar 

  • Yarnold JC (1993) Rock-avalanche characteristics in dry climates and the effect of flow into lakes: insights from mid-Tertiary sedimentary breccias near Artillery Peak, Arizona. Geol Soc Am Bull 105:345–360

    Article  Google Scholar 

  • Yoshida H (2013) Decrease of size of hummocks with downstream distance in the rockslide-debris avalanche deposit at Iriga volcano, Philippines: similarities with Japanese avalanches. Landslides 10:665–672

    Article  Google Scholar 

  • Yoshida H, Sugai T (2007) Topographical control of large-scale sediment transport by a river valley during the 24 ka sector collapse of Asama volcano, Japan. Géomorphologie Relief Process Environ 13:217–224

    Article  Google Scholar 

  • Yoshida H, Sugai T, Ohmori H (2012) Size-distance relationships for hummocks on volcanic rockslide-debris avalanche deposits in Japan. Geomorphology 136:76–87

    Article  Google Scholar 

  • Zernack AV, Procter JN, Cronin SJ (2009) Sedimentary signatures of cyclic growth and destruction of stratovolcanoes: a case study from Mt. Taranaki, New Zealand. Sediment Geol 220:288–305

    Article  Google Scholar 

  • Zhang M, McSaveney MJ (2017) Rock-avalanche deposits store quantitative evidence on internal shear during runout. Geophys Res Lett 44(17):8814–8821

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Gareth Fabbro for helpful discussion and comments during the preparation of the manuscript. We also highly appreciate the thorough reviews and comments from Dr. Shinji Takarada, Dr. Anja Dufresne and Dr. Samuel McColl, which greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Engielle M. R. Paguican .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paguican, E.M.R., Roverato, M., Yoshida, H. (2021). Volcanic Debris Avalanche Transport and Emplacement Mechanisms. In: Roverato, M., Dufresne, A., Procter, J. (eds) Volcanic Debris Avalanches. Advances in Volcanology. Springer, Cham. https://doi.org/10.1007/978-3-030-57411-6_7

Download citation

Publish with us

Policies and ethics