Skip to main content

Trichoderma as Biostimulant: Factors Responsible for Plant Growth Promotion

  • Chapter
  • First Online:
Trichoderma: Agricultural Applications and Beyond

Part of the book series: Soil Biology ((SOILBIOL,volume 61))

Abstract

Trichoderma has detonated as biostimulant and mycofungicide for improvement of economically important plants of different agriculture, forestry, horticulture sectors, in regard to their protection against abiotic and biotic stress as well as proper growth, development, and productivity. Trichoderma plays a vital role by enhancing and modifying the root surface so that plants can do better nutrient uptake and mobilize minerals fast. It can enhance the mineral content in the vicinity of the rhizosphere through solubilization of bound forms, significantly facilitating the plant growth by releasing growth hormones. It is evident that Trichoderma induces systemic resistance in plants against various pathogens with the help of various volatile and nonvolatile metabolites, siderohores, enzymes, antioxidants, and polysaccharides. On the one hand, the fungus creates rhizosphere competence, and on the other hand, efficiently eases the unfavorable effect of various environmental stress through antioxidant production and physiological modulation in plants. Recently, molecular and biochemical dialogs between Trichoderma and host plants have been studied thoroughly and envisaged the significance of gene–gene interaction corroborate with protein–protein interaction among them. Though the Trichoderma and genesis of its benefits have been studied, described, and cited comprehensively, the content of the chapter emphasizes the molecular, physiological, biochemical, and morphological interaction of Trichoderma and enlighten the compact and composed picture of its direct and indirect benefit to the host plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aban L, Barcelo RC, Oda EE, Reyes GA, Balangcod TD, Gutierrez RM, Hipol RM (2017) Production, phosphate Solubilisation and ACC Deaminase activity of root symbiotic fungi (RSF) from Drynaria quercifolia L Jomar. Bull Env Pharmacol Life Sci 6(5):18–23

    Google Scholar 

  • Abdel Fattah MG, Shabana MY, Ismail EA, Rashad MY (2007) Trichoderma harzianum: a biocontrol agent against Bipolaris oryzae. Mycopathologia 164:81–89

    Article  PubMed  Google Scholar 

  • Adams P, de Leij M, Lynch JM (2007) Trichoderma harzianum rifai 1295–22 mediates growth promotion of crack willow (Salix fragilis) saplings in both clean and metal-contaminated soil. Microb Ecol 54:306–313

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Hashem A, Abd-Allah EF, Alqarawi AA, John R, Egamberdieva D, Gucel S (2015) Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L ) through antioxidative defense system. Front Plant Sci 6:868

    PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010a) Roles of enzymatic and non- enzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30:161–175

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Jaleel CA, Sharma S (2010b) Antioxidative defense system, lipid peroxidation, proline metabolizing enzymes and biochemical activity in two genotypes of Morus alba L subjected to NaCl stress. Russ J Plant Physiol 57:509–517

    Article  CAS  Google Scholar 

  • Alabouvette C, Olivain C, Migheli Q, Steinberg C (2009) Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum. New Phytol 184:529–544

    Article  CAS  PubMed  Google Scholar 

  • Altomare C, Norvell WA, Björkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl Environ Microbiol 65:2926–2933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • AlwhibiMonaa S, Allah AHEF, Alqarawi AA, Sliman DWK, Wirth S, Gamberdieva DE (2017) Increase resistance of drought by Trichoderma harzianum fungal treatment correlates with increased secondary metabolites and proline content. J Inte Agri 16(8):1751–1757

    Article  Google Scholar 

  • Andberg M, Penttila M, Saloheimo M (2015) Swollenin from Trichoderma reesei exhibits hydrolytic activity against cellulosic substrates with features of both endoglucanases and cellobiohydrolases. Bio/Technology 181:105–113

    CAS  Google Scholar 

  • Babu AG, Shim J, Bang KS, Shea PJ, Oh BT (2014) Trichoderma virens PDR-28: a heavy metal-tolerant and plant growth-promoting fungus for remediation and bioenergy crop production on mine tailing soil. J Environ Manag 132:129–134

    Article  CAS  Google Scholar 

  • Bae H, Roberts DP, Lim HS, Strem MD, Park SC, Ryu CM, Bailey BA (2011) Endophytic Trichoderma isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. Mol Plant-Microbe Interact 24(3):336–351

    Article  CAS  PubMed  Google Scholar 

  • Baker R, Elad Y, Chet I (1984) The controlled experiment in the scientific method with special emphasis on biological control. Phytopathology 74:1019–1021

    Article  Google Scholar 

  • Bal U, Altintas S (2006) Effects of Trichoderma harzianum on the yield and fruit quality of tomato plants (Lycopersicon esculentum) grown in an unheated greenhouse. Aust J Exp Agric 46(1):131–136

    Article  Google Scholar 

  • Benitez T, Rincon MA, Limon MC, Codon CA (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiool 7:249–260

    CAS  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends in Plant Sci 17(8):478–486

    Article  CAS  Google Scholar 

  • Bishnoi NR, Kumar R, Bishnoi K (2007) Biosorption of Cr (VI) with Trichoderma viride immobilized fungal biomass and cell free Ca – alginate beads. Indian J Exp Biol 45:657

    CAS  PubMed  Google Scholar 

  • Bitas V, Kim HS, Bennett JW, Kang S (2013) Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. Mol Plant Microbe Interact J 4:835–843

    Article  CAS  Google Scholar 

  • Bjorkman T, Blanchard LM, Harman GE (1998) Growth enhancement of shrunken-2 sweet corn when colonized with Trichoderma harzianum 1295-22: effect of environmental stress. J Am Soc Hortic Sci 123:35–40

    Article  Google Scholar 

  • Boller T (1991) Ethylene in pathogenesis and disease resistance. In: Mattoo AK, Suttle JC (eds) The plant hormone ethylene. CRC Press, Boca Raton, FL, pp 293–314

    Google Scholar 

  • Boregowda N, Puttaswamy H, Sripathy H, Nagaraja G (2017) Trichoderma oligosaccharides priming mediates resistance responses in pearl millet against downy mildew pathogen. J Applied Biol Biotechnol 5(2):97–103

    Google Scholar 

  • Cai F, Yu G, Wang P, Wei Z, Fu L, Shen Q et al (2013) Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum. Plant Physiol Biochem 73:106–113

    Article  CAS  PubMed  Google Scholar 

  • Cao L, Jiang M, Zeng Z, Du A, Tan H, Liu Y (2008) Trichoderma atroviride F6 improves phyto extraction efficiency of mustard (Brassica juncea (L ) Coss var foliosa Bailey) in cd, Ni contaminated soils. Chemosphere 71(9):1769–1773

    Article  CAS  PubMed  Google Scholar 

  • Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett MJ (2003) Dissecting Arabidopsis lateral root development. Trends Plant Sci 8:165–171

    Article  CAS  PubMed  Google Scholar 

  • Casimiro I, Marchant A, Bhalerao RP, Swarup R, Graham N, Inzé D, Sandberg G, Casero PJ, Bennett M (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13:843–852

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chagas LFB, Chagas AFJ, de Castro HG (2017) Phosphate solubilization capacity and indole acetic acid production by Trichoderma strains for biomass increase on basil and mint plants. Brazilian J Agriculture 92(2):176–185

    Article  Google Scholar 

  • Chagas LFB, Chagas Junior AF, de Carvalho MR, Miller LO, Colonia BSO (2015) Evaluation of the phosphate solubilization potential of Trichoderma strains (Trichoplus JCO) and effects on rice biomass. J Soil Sci Plant Nutr 15(3):794–804

    Google Scholar 

  • Chang YC, Baker R, Kleifeld O, Chet I (1986) Increased growth of plants in the presence of the biological control agent Trichoderma harzianum. Plant Dis 70:145–148

    Article  Google Scholar 

  • Chet I (1990) Biological control of soil borne plant pathogens with fungal antagonists in combination with soil treatments. In: Hornby D (ed) Biological control of soil borne plant pathogens. CAB Intrnationals, Wallingford, pp 15–25

    Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2006) Salt stress signaling and mechanisms of plant salt tolerance. Genet Eng (N Y) 27:141–177

    Article  CAS  Google Scholar 

  • Chugh JK, Wallace BA (2001) Peptaibols: models for ion channels. Biochem Soc Trans 29:565–570

    Article  CAS  PubMed  Google Scholar 

  • Colla G, Rouphael Y, Canaguier R, Svecova E, Cardarelli M (2014) Biostimulantaction of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Front Plant Sci 5:1–6

    Article  Google Scholar 

  • Colla G, Rouphael Y, Di Mattia E, El-Nakhel C, Cardarelli M (2015) Co-inoculation of Glomus intraradices and Trichoderma atroviride acts as abiostimulant to promote growth, yield and nutrient uptake of vegetable crops. J Sci Food Agric 95:1706–1715

    Article  CAS  PubMed  Google Scholar 

  • Cordovez V, Schop S, Hordijk K, Dupréde Boulois H, Coppens F, Hanssen I, Raaijmakers JM, Carrión VJ (2018) Priming of plant growth promotion by volatiles of root-associated Microbacterium spp. Appl Environ Microbiol 84:1865–1818

    Article  Google Scholar 

  • Cornejo HAC, Rodríguez LM, Cuevas RA, Bucio JL (2014) Trichoderma spp. improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na+ elimination through root exudates. Mol Plant-Microbe Interact 27(6):503–514

    Article  CAS  Google Scholar 

  • Cornejo HAC, Rodriguez LM, Panagoz CC, Bucio JL (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an Auxin-dependent mechanism in Arabidopsis. Plant Physiol 149(3):1579–1592

    Article  CAS  Google Scholar 

  • Cristea VZ, Răut TE, Sesan BT, Oancea F (2017) Surface response optimization of submerged biomass production for a plant biostimulant Trichoderma strain. Scientific Bulletin Series F Biotechnologies 21:56–65

    Google Scholar 

  • Cummings NJ, Ambrose A, Braithwaite M, Bisstt J, Roslan HA, Abdullah J, Stewart A, Agbayani FV, Steyaert J, Hill RA (2016) Diversity of root –endophytic Trichoderma from Malaysian borneo. Mycol Prog 15:50

    Article  Google Scholar 

  • Daguerre Y, Siegel K, Edel-Hermann V, Steinberg C (2014) Fungal proteins and genes associated with biocontrol mechanisms of soil-borne pathogens: a review. Fungal Biol Rev 28:97–125

    Article  Google Scholar 

  • Deliopoulos T, Kettlewell PS, Hare MC (2010) Fungal disease suppression byinorganic salts: a review. Crop Prot 29:1059–1075

    Article  CAS  Google Scholar 

  • Devi S, Sreenivasulu Y, Bhaskara Rao KV (2017) Protective role of Trichoderma logibrachiatum (WT2) on Lead induced oxidative stress in Helianthus annus L. Indian J Exp Biol 55:235–241

    CAS  Google Scholar 

  • Doni F, Ishahak A, Radziah C, Zain CM, Mohtar W, Yusuff W (2014) Physiological and growth response of rice plants ( Oryza sativa L ) to Trichoderma spp. Inoculants ANB express 4:45

    Google Scholar 

  • du Jardin P (2015) Plant biostimulants: definition, concept, main categories and regulation. Scientia Horticulture 196:3–14

    Article  CAS  Google Scholar 

  • EIBC (European Biostimulants Industry Council) (2013) Promoting the Biostimulant Industry and the Role of Plant Biostimulants in Making Agriculture More Sustainable Available online at: www biostimulants eu/

    Google Scholar 

  • Eibinger M, Karin S, Sateelkow J, Thomas G, Ramoni J, Seiboth B, Plank H, Nidetzky B (2016) Functional characterization of the native swollenin from Trichoderma reesei: study of its possible role as C1 factor of enzymatic lignocellulose conversion. Biotechnol Biofuels 9(1):178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El-Katathy MH, Gudelj M, Robra KH, Elnaghy MA, Gubitz GM (2001) Characterization of chitinase and an endo B 1 3 glucanase from Trichoderma harzianum Rifai T 24 involved in control of the phytopahtogen Sclerotium rolfsii. Appl Microbiol Biotechnol 56(1–2):137–143

    Article  Google Scholar 

  • Ezzi MI, Lynch JM (2005) Biodegradation of cyanide by Trichoderma spp. and Fusarium spp. Enzym Microb Technol 36:849–854

    Article  CAS  Google Scholar 

  • Fernandez E, Trillas MI, Segarra G (2017) Increased rhizosphere populations of Trichoderma asperellum strain T34 caused by secretion pattern of root exudates in tomato plants inoculated with Botrytis cinerea. Plant Pathol 66(7):1110–1116

    Article  CAS  Google Scholar 

  • Fiorentino N, Ventorino V, Woo SL, Pepe O, De Rosa A, Gioia L, Romano I, Lombardi N, Napolitano M, Colla G, Rouphael Y (2018) Trichoderma based biostimulants modulate rhizosphere microbial populations and improve N uptake efficiency, yield, and nutritional quality of leafy vegetables. Front Plant Sci 9:743

    Article  PubMed  PubMed Central  Google Scholar 

  • Fontenelle ADB, Guzzo SD, Lucon CMM, Harakava R (2011) Growth promotion and induction of resistance in tomato plant against Xanthomonas euvesicatoria and Alternaria solani by Trichoderma spp. Crop Prot 30:1492–1500

    Article  Google Scholar 

  • França DVC, Kupper KC, Magri MMR, Gomes TM, Rossi F (2017) Trichoderma spp. isolates with potential of phosphate solubilization and growth promotion in cherry tomato. Pesquisa Agropecuaria Tropical 47(4):360–368

    Article  Google Scholar 

  • Fu J, Liu Z, Li Z, Wang Y, Yang K (2017) Alleviation of the effects of saline-alkaline stress on maize seedlings by regulation of active oxygen metabolism by Trichoderma asperellum. PLoS One 12(6)

    Google Scholar 

  • Gailīte A, Samsone I, Ievinsh G (2005) Ethylene is involved in Trichoderma-induced resistance of bean plants against Pseudomonas syringe. Acta Univ Latv 691:59–67

    Google Scholar 

  • Gajera HP, Bambharolia RP, Patel SV, Khatrani TJ, Goalkiya BA (2012) Antagonism of Trichoderma spp against Macrophomina phaseolina: evaluation of coiling and cell wall degrading enzymatic activities. J Plant Pathol Microb 3:7–10

    Google Scholar 

  • Garrette SD (1956) Biology of root-infecting fungi. Cambridge university Press, Cambridge UK, p 293

    Google Scholar 

  • Ghildiyal A, Pandey A (2008) Isolation of cold tolerant antifungal strains of Trichoderma sp. from glacial sites of Indian Himalayan region. Res J Microbiol 3:559–564

    Article  Google Scholar 

  • Ghorbanpour A, Salini A, Ali M, Ghanbary T, Pirdashti H, Dehestani A (2018) The effect of Trichoderma harzianum in mitigating low temperature stress in tomato (Solanum lycopersicum L ) plants. Scientia Horticulurae 230:134–141

    Article  Google Scholar 

  • Guey N, Kumar K, Dangue A, Arama M (2018) Bioproduction of indol 3 acetic acid by Trichoderma strains isolated from agriculture field soils in Senegal. World J Pharmaceutical Res 7(17):817–825

    Google Scholar 

  • Guzmán-G P, Duarte MIA, Delaye L, Estrella AH, Monfil VO (2017) Identification of effector-like proteins in Trichoderma spp. and role of a hydrophobin in the plant-fungus interaction and mycoparasitism. BMC Genet 18:16

    Article  CAS  Google Scholar 

  • Hadwiger LA (2013) Multiple effects of chitosan on plant systems: solid science orhype. Plant Sci 208:42–49

    Article  CAS  PubMed  Google Scholar 

  • Halpern M, Bar-Tal A, Ofek M, Minz D, Muller T, Yermiyahu U (2015) The use of biostimulants for enhancing nutrient uptake. In: Sparks DL (ed) Advances in agronomy, vol 129. Elsevier, Boston, pp 141–174

    Google Scholar 

  • Harman GE (2000) Myths and dogmas of biocontrol – changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Dis 84:377–393

    Article  CAS  PubMed  Google Scholar 

  • Harman GE (2006) Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96:190–194

    Article  CAS  PubMed  Google Scholar 

  • Harman GE (2011) Multifunctional fungal plant symbionts: new tools to enhance plant growth and productivity. New Phytol 189:647–649

    Article  PubMed  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004a) Trichoderma species – opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Harman GE, Lorito M, Lynch JM (2004b) Uses of Trichoderma spp.to remediate soil and water pollution. Adv Appl Microbiol 56:313–330

    Article  CAS  PubMed  Google Scholar 

  • Hashem A, Allah AE, Alqarawi AA, Al Asma HA, Dilfuza E (2014) Alleviation of abiotic salt stress in Ochradenus baccatus (Del ) by Trichoderma hamatum (Bonord ) Bainier. J Plant Interact 9:10

    Article  CAS  Google Scholar 

  • Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25

    Article  CAS  PubMed  Google Scholar 

  • Hoseinzadeh S, Shahabiv S, Aliloo AA (2017) Toxic metals accumulation in Trichoderma asperellum and T.harzianum. Microbiology 86(6):728–736

    Article  CAS  Google Scholar 

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10

    Article  CAS  PubMed  Google Scholar 

  • Hung R, Lee S, Bennett JW (2013) Arabidopsis thaliana as a model system for testing the effects of Trichoderma volatile organic compounds. Fungal Ecol 6:19–26

    Article  Google Scholar 

  • Inbar J, Abramsky M, Cohen D, Chet I (1994) Plant growth enhancement and disease control by Trichoderma harzianum in vegetable seedlings grown under commercial conditions. Eur J Plant Pathol 100:337–346

    Article  Google Scholar 

  • Insam H, Seewald SA (2010) Volatile organic compounds (VOCs) in soils. Biol Fertil Soils 46:199–213

    Article  CAS  Google Scholar 

  • Junker RR, Tholl D (2013) Volatile organic compound mediated interactions at the plant– microbe interface. J Chem Ecol 39:810–825

    Article  CAS  PubMed  Google Scholar 

  • Kaewchai S, Soytong K, Hyde KD (2009) Mycofungicide and fungal biofertilizers. Fungal Divers 3:25–50

    Google Scholar 

  • Kandasamy SK, Arasu VS, Kathiresan K (2010) Effect of Trichoderma on soil phosphate solubilization and growth improvement of Avicennia marina. Aquat Bot 41(3):787–795

    Google Scholar 

  • Kapri A, Tewari L (2011) Phosphate solubilization potential and phosphatase activity of rhizospheric Trichoderma spp. Curr Microbiol 62(5):1521–1527

    Article  CAS  Google Scholar 

  • Karcprzak M, Malina G (2005) The tolerance and Zn2+, Ba2+ and Fe2+ accumulation by Trichoderma atroviride and Mortierella exigua isolated from contaminated soil. Can J Soil Sci 85:283–290

    Article  Google Scholar 

  • Katiyar D, Hemantaranjan A, Singh B (2015) Chitosan as a promising natural compound to enhance potential physiological responses in plant: a review. Indian J Plant Physiol 20:1–9

    Article  Google Scholar 

  • Kauss H, Jeblick W, Domard A (1989) The degrees of poylimerization and N-acetylation of chitosan determine its ability to elicite callose formation in suspension cells and protoplasts of Catharanthus roseus. Planta 1(178):385–392

    Article  Google Scholar 

  • Keller NP (2019) Fungal secondary metabolism: regulation, function and drug discovery. Nat Rev Microbiol 17:167–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism from biochemistry to genomics. Nat Rev Microbiol 3(12):937–947

    Article  CAS  PubMed  Google Scholar 

  • Khan W, Rayirath UP, Subramanian S, Jithesh MN, Rayorath P, Hodges DM, Critchley AT, Craigie JS, Norrie J, Prithiviraj B (2009) Seaweed extracts as biostimulants of plant growth and development. J Plant Growth Regulation 28:386–399

    Article  CAS  Google Scholar 

  • Kleifeld O, Chet I (1992) Trichoderma harzianum-interaction with plants and effect on growth response. Plant Soil 144:267–272

    Article  Google Scholar 

  • Korpi A, Jarnberg J, Pasanen AL (2009) Microbial volatile organic compounds. Crit Rev Toxicol 139:93

    Google Scholar 

  • Kredics L, Antal Z, Manczinger L, Nagy E (2001) Breeding of mycoparasitic Trichoderma strains for heavy metal resistance. Lett Appl Microbiol 2:112–116

    Article  Google Scholar 

  • Kumar A, Aggarwal A, Kaushish S (2009) Influence of arbuscular mycrooohizal fungi and Trichoderma viride ongrowth performance of Salvia offficnalis Linn. J Appl Nat Sci 1:13–17

    Article  Google Scholar 

  • Kumar NV, Rajam KS, Rani ME (2017) Plant growth promotion efficacy of Indole acetic acid (IAA) produced by a mangrove associated fungi-Trichoderma virideVKF3. Int J Curr Microbiol App Sci 6(11):2692–2701

    Article  CAS  Google Scholar 

  • Kumar SK, Yu C, Dou K, Wang M, Li Y, Chen J (2016) Synergistic effect of Trichoderma- derived antifungal metabolites and cell wall degrading enzymes on enhanced biocontrol of Fusarium oxysporum f sp cucumerinum. Biol Control 94:37–46

    Article  CAS  Google Scholar 

  • Larkin RP (2008) Relative effects of biological amendments and crop rotations on soil microbial communities and soilborne diseases of potato. Soil Biol Biochem 40:1341–1351

    Article  CAS  Google Scholar 

  • Lattanzio V, Lattanzio VMT, Cardinali A (2006) Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochem Adv Res 6:23–67

    Google Scholar 

  • Lee S, Hung R, Yap M, Bennett JW (2015) Age matters: the effects of volatile organic compounds emitted by Trichoderma atroviride on plant growth. Arch Microbiol 197:723–730

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Yap M, Behringer G, Hung R, Bennett JW (2016) Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biology and Biotechnology 3:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Lei Z, Zhang YQ (2015) Effects of phosphate solubilization and phytohormone production of Trichoderma asperellum Q1 on promoting cucumber growth under salt stress. J Integr Agric 14(8):1588–1597

    Article  CAS  Google Scholar 

  • Lemfack MC, Nickel J, Dunkel M, Preissner R, Piechulla B (2014) VOC: a database of microbial volatiles. Nucleic Acids Res 42:744–752

    Article  CAS  Google Scholar 

  • Li R-X, Cai F, Pang G, Shen Q-R, Li R, Chen W (2015) Solubilisation of phosphate and micronutrients by Trichoderma harzianum and its relationship with the promotion of tomato plant growth. PLoS One 10(6):e0130081

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li W, Xu J, Li F, Xu L, Li C (2016) A new antifungal isocoumarin from the endophytic fungus Trichoderma sp 09 of Myoporum bontioides a gray. Phcog Mag 12(48):259–261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lombardi N, Vitale S, Turrà D, Reverberi M, Fanelli C, Vinale F, Marra R, Ruocco M, Pascale A, D’Errico G, Woo SL, Lorito M (2018) Root exudates of stressed plants stimulate and attract Trichoderma soil fungi. Mol Plant Microbe 31(10):982–994

    Article  CAS  Google Scholar 

  • Lopaz MG, Avilez M, Dalgado A (2015) Plant uptake of phosphorus from sparingly available as P sources as affected by Trichoderma asperellum T −34. Agriculture Food Sci 24:249–260

    Article  Google Scholar 

  • López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280–287

    Article  PubMed  CAS  Google Scholar 

  • López-Bucio J, Cruz-Ramírez A, Pérez-Torres A, Ramírez-Pimentel JG, Sánchez-Calderón L, Herrera-Estrella L (2005) Root architecture. In: Turnbull C (ed) Plant architecture and its manipulation. Blackwell Annual Review Series, Oxford, pp 181–206

    Google Scholar 

  • López-Bucio J, Pelagio-Flores R, Herrera-Estrella A (2015) Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Sci Hortic 196:109–123

    Article  Google Scholar 

  • MacKenzie AJ, Starman TW (1995) Enhanced root and shoot growth of Chrysanthemum cuttings propagated with the fungus Trichoderma harzianum. HortScience 30(3):496–498

    Article  Google Scholar 

  • Manganiello G, Sacco A, Ercolano MR, Vinale F, Lanzuise S, Pascale A et al (2018) Modulation of tomato response to Rhizoctonia solani by Trichoderma harzianum and its secondary metabolite harzianic acid. Front Microbiol 9:1966

    Article  PubMed  PubMed Central  Google Scholar 

  • Maria FNJ, Steyaert JM, Salazar Badillo FB, Nguyen DV, Rostas M, Baithwaite M, De Souza JT, Bremont JFJ, Ohkura M, Stewart A, Mendoza AM (2017) Environmental growth conditions of Trichoderma spp. affects Indole acetic acid derivatives, volatile organic compounds, and plant growth promotion. Front. Plant Sci 8:102

    Google Scholar 

  • Mastouri F, Björkman T, Harman GE (2010) Seed treatment with Trichoderma harzianum alleviatesbiotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology 100(11):1213–1221

    Article  PubMed  CAS  Google Scholar 

  • Mastouri F, Bjorkman T, Harman GE (2012) Trichoderma harzianum enhances antioxidant defense of tomato seedlings and resistance to water deficit. Mol Plant-Microbe Interact 25:1264–1271

    Article  CAS  PubMed  Google Scholar 

  • Maurya S, Rashk-E-Eram NSK, Choudhary JS, Kumar S (2019) Heavy metals scavenging potential of Trichoderma asperellum and Hypocrea nigricans isolated from acid soil of Jharkhand. Indian J Microbiol 59(1):27–38

    Article  CAS  PubMed  Google Scholar 

  • McNeal L, Herbert B (2009) Volatile organic metabolites as indicators of soil microbial activity and community composition shifts. Soil Sci Soc Am J 73:579–588

    Article  CAS  Google Scholar 

  • Meena M, Prashant S, Zehra A, Dubey MK, Upadhyay RS (2017) Antagonistic assessment of Trichoderma spp. by producing volatile and non-volatile compounds against different fungal pathogens. Arch Phytopathol Plant Protect 50(13–14):629–648

    Article  CAS  Google Scholar 

  • Mendoza-Mendoza A, Zaid R, Lawry R, Hermosa R, Monte E, Horwitz BA et al (2018) Molecular dialogues between Trichoderma and roots: role of the fungal secretome. Fungal Biol Rev 32:62–85

    Article  Google Scholar 

  • Meng-Fei L, Guo-Hong L, Zhang K-Q (2019) Non-volatile metabolites from Trichoderma spp. Meta 9(58):1–24

    Google Scholar 

  • Meyer V (2008) Genetic engineering of filamentous fungi-Progress, obstacles and future trends. Biotechnol Adv 26:177–185

    Article  CAS  PubMed  Google Scholar 

  • Miethke M (2013) Molecular strategies of microbial iron assimilation: from high affinity complexes to cofactor assembly systems. Metallomics 5:15–28

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Singh A, Keswani C, Saxena A, Sarma BK, Singh HB (2015) Harnessing plant-microbe interactions for enhanced protection against phytopathogens. In: Arora NK (ed) Plant microbes Symbiosis: applied facets. Springer, India, pp 111–125

    Google Scholar 

  • More A, Giacobbe S, Faraco V (2013) Regulation of cellulase and hemi-cellulase gene expression in fungi. Curr Genomics 14:230–249

    Article  CAS  Google Scholar 

  • Mukherjee M, Mukherjee PK, Horwitz BA, Zachow C, Berg G, Zeilinger S (2012) Trichoderma plant pathogen interactions: advances in genetics of biological control. Indian J Microbiol 52(4):522–529

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukherjee PK, Wiest A, Ruiz N, Keightley A, Diez M, McCluskey K, Pouchus YF, Kenerley CM (2011) Two classes of new peptaibols are synthesized by a single non ribosomal peptide synthetase of Trichoderma virens. J Biol Chem 286:4544–4554

    Article  CAS  PubMed  Google Scholar 

  • Naseby DC, Pascual JA, Lynch JM (2000) Effect of biocontrol strains of Trichoderma on plant growth, Pythium ultimum populations, soil microbial communities and soil enzyme activities. J Appl Microbiol 88:161–169

    Article  CAS  PubMed  Google Scholar 

  • Nawrocka J, Gromek A, Małolepsza U (2019) Nitric oxide as a beneficial signaling molecule in Trichoderma atroviride TRS25-induced systemic defense responses of cucumber plants against Rhizoctonia solani. Front Plant Sci 10:421

    Article  PubMed  PubMed Central  Google Scholar 

  • Nongmaithem N, Roy A, Bhattacharya PM (2016) Screening of Trichoderma isolates for their potential of biosorption of nickel and cadmium. Braz J Microbiol 47(2):305–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oladipo OG, Awotoye OO, Olayinka A, Bezuidenhout CC, Maboeta MS (2018) Heavy metal tolerance traits of filamentous fungi isolated from gold and gemstone mining sites. Braz J Microbiol 49(1):29–37

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits EAH, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12:267–274

    Article  CAS  PubMed  Google Scholar 

  • Poosapati S, Ravulapalli PD, Tippirishetty N, Vishwanathaswamy DK, Chunduri S (2014) Selection of high temperature and salinity tolerant Trichoderma isolates with antagonistic activity against Sclerotium rolfsii. Springerplus 3:641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Puyam A (2016) Advent of Trichoderma as a bio-control agent- a review.Journal of. Applied Natural Sci 8(2):1100–1109

    Article  Google Scholar 

  • Rani P, Agarwal A, Mehrotra RS (1998b) Growth responses in Acacia nilotica inoculated with VAM fungi (Glomus fasciculatum ) Rhizobium sp. and Trichoderma harzianum. J mycopath Res 36:13–16

    Google Scholar 

  • Rani P, Aggarwal A, Mehrotra RS (1998a) Establishment of nursery technology through G. mosseae, Rhizobium sp. and Trichoderma harzianum on better biomass yield of Prosopis cineraria Linn. Proc Nat Acad Sci Sec B 68:301–305

    Google Scholar 

  • Rao KLNM, Siva RK, Ravisankarc H (2016) Cultural conditions on the production of extracellular enzymes by Trichoderma isolates from tobacco rhizosphere. Braz J Microbiol 47:25–32

    Article  CAS  Google Scholar 

  • Rawat L, Bisht TS, Kukreti A, Prasad M (2016) Bioprospecting drought tolerant Trichoderma harzianum isolates promote growth and delay the onset of drought responses in wheat (Triticum aestivum L ). Molecular Soil Biol 7(4):1–15

    Google Scholar 

  • Rawat L, Singh Y, Shukla N, Kumar J (2011) Alleviation of the adverse effects of salinity stress in wheat (Triticum aestivum L ) by seed biopriming with salinity tolerant isolates of Trichoderma harzianum. Plant Soil 347:387–400

    Article  CAS  Google Scholar 

  • Rawat L, Singh Y, Shukla N, Kumar J (2013) Salinity tolerant Trichoderma harzianum reinforces NaCl tolerance and reduces population dynamics of Fusarium oxysporum f sp ciceri in chickpea (Cicer arietinum L ) under salt stress conditions. Arch Phytopathol Plant Protect 46(12):1442–1467

    Article  CAS  Google Scholar 

  • Rawat R, Tewari L (2005) Effect of abiotic stress on phosphate solubilization by biocontrol fungus Trichoderma sp. Can J Microbiol 51(3):217–222

    Article  Google Scholar 

  • Reed RC, Brady SR, Muday G (1998) Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis. Plant Physiol 118:1369–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Resende MP, Jakoby ICMC, Dos Santos LCR, Soares MA, Pereira FD, Souchie EL, Silva FG (2014) Phosphate solubilization and phytohormone production by endophytic and rhizosphere Trichoderma isolates of Guanandi (Calophyllum Brasiliense Cambess). Afr J Microbiol Res 8:2616–2623

    Article  CAS  Google Scholar 

  • Ripa FA, Cao W, Tong S, Sun J (2019) Assessment of plant growth promoting and abiotic stress tolerance properties of wheat endophytic fungi. Bio Med Res Int 6105865:12

    Google Scholar 

  • Sala E, Burzi PL, Galletti SM, Cerato C (2007) Multiple effects of Trichoderma spp. applied to sugar beet towards soil-borne pathogens. Bulletin-OILB/SROP 30(6–1):199–202

    Google Scholar 

  • Salwan R, Rialch N, Sharma V (2019) Bioactive volatile metabolites of Trichoderma: an overview. In: Singh HB, Keswani C, Reddy M, Sansinenea E, García-Estrada C (eds) Secondary metabolites of plant growth promoting Rhizomicroorganisms. Springer, Singapore, pp 87–111

    Chapter  Google Scholar 

  • Samolski I, Rincón AM, Pinzón LM, Viterbo A, Monte E (2012) The qid74 gene from Trichoderma harzianum has a role in root architecture and plant biofertilization. Microbiology 158:129–138

    Article  CAS  PubMed  Google Scholar 

  • Sarrocco S, Guidi L, Fambrini S, DesI-Innocenti E, Vannacci G (2009) Competition for cellulose exploitation between Rhizoctonia solani and two Trichoderma isolated in the decomposition of wheat straw. J Plant Pathol 91:331–338

    CAS  Google Scholar 

  • Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842

    Article  CAS  PubMed  Google Scholar 

  • Schuster A, Schmoll M (2010) Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 87(3):787–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanmugaiah V, Balasubramanian N, Gomathinayagam S, Manoharan PT, Rajendran A (2009) Effect of single application of Trichoderma viride and Pseudomonas fluorescens on growth promotion in cotton plants. Afr J Agric Res 4:1220–1225

    Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  CAS  PubMed  Google Scholar 

  • Shukla N, Awasthi RP, Rawat L, Kumar J (2012) Biochemical and physiological responses of rice (Oryza sativa L ) as influenced by Trichoderma harzianum under drought stress. Plant Physiol Biochem 54:78–88

    Article  CAS  PubMed  Google Scholar 

  • Shukla N, Awasthi RP, Rawat L, Kumar J (2015) Seed biopriming with drought tolerant isolates of Trichoderma harzianum promote growth and drought tolerance in Triticum aestivum. Ann Appl Biol 166(2):171–182

    Article  CAS  Google Scholar 

  • Shukla RM, Vyas RV (2014) Effects of phosphate solubilization and phytohormone production of Trichoderma asperellum Q1 on promoting cucumber growth under salt stress. Int J Agriculture, Environ Biotechnol 7(4):705–710

    Article  Google Scholar 

  • Singh V, Joshi BB, Awasthi SK, Srivastava SN (2008) Eco-friendly management of red rot disease of sugarcane with Trichoderma strains. Sugar Tech 10:158–161

    Article  Google Scholar 

  • Singh PK, Kumar V (2013) Differential biocontrol and rhizosphere competence ability in strains of Trichoderma harzianum. J Agricultural Tech 8:2245–2257

    Google Scholar 

  • Singh R, Shelke G, Kumar A, Jha P (2015) Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants. Front Microbiol 6(937):1–14

    CAS  Google Scholar 

  • Singh SP, Singh HB, Singh DK, Rakshit A (2014) Trichoderma mediated enhancement of nutrient uptake and reduction in incidence of Rhizoctonia solani in tomato. Egypt J Biol 16:29–38

    Article  Google Scholar 

  • Singh VS, Zaidi NW, Joshi D, Khan T, John D, Bajpai A (2004) Trichoderma: a microbe with multifaceted activity. Annu Rev Plant Pathol 3:33–75

    Google Scholar 

  • Sivasithamparam K, Ghisalberti EL (1998) Secondary metabolism in Trichoderma and Gliocladium. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium, basic biology, taxonomy and genetics. Taylor and Francis Ltd., London, pp 139–191

    Google Scholar 

  • Tansengco M, Tejano J, Coronado F, Gacho C, Barcelo J (2018) Heavy metal tolerance and removal capacity of Trichoderma species isolated from mine tailings in Itogon, Benguet. Environ Natural Res J 16(1):39–57

    Google Scholar 

  • Tukhbatova RI, Fattakhova AN, Alimova FK (2014) Anticancer properties of Trichoderma asperellum 302 from buried soils. Tsitologiia 56(6):450–452

    CAS  PubMed  Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119(3):243–254

    Article  CAS  Google Scholar 

  • Vargas WA, Mandawe JC, Kenerley CM (2009) Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. Plant Physiol 151:792–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vázquez MM, César S, Azcón R, Barea JM (2000) Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl Soil Ecol 15:261–272

    Article  Google Scholar 

  • Vieira D, França C, Kupper KC, Magri MMR, Gomes TM, Rossi F (2017) Trichoderma spp. isolates with potential of phosphate solubilization and growth promotion in cherry tomato. Pesq Agropec Trop, Goiânia 47(4):360–368

    Article  Google Scholar 

  • Vinale F, Flematti G, Sivasithamparam K, Lorito M, Marra R, Skelton BW, Ghisalberti EL (2009b) Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. J Nat Prod 72:2032–2035

    Article  CAS  PubMed  Google Scholar 

  • Vinale F, Ghisalberti EL, Sivasithamparam K, Marra R, Ritieni A, Ferracane R, Woo S, Lorito M (2009a) Factors affecting the production of Trichoderma harzianum secondary metabolites during the interaction with different plant pathogens. Lett Appl Microbiol 48:705–711

    CAS  PubMed  Google Scholar 

  • Vinale F, Marra R, Ruocco M (2014) Trichoderma secondary metabolites active on plants and fungal pathogens. Open Mycology J 8:127–139

    Article  Google Scholar 

  • Vinale F, Marra R, Scala F, Ghisalberti EL, Lorito M, Sivasithamparam K (2006) Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett Appl Microbio 43:143–148

    Article  CAS  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ, Li H, Lorito M (2008a) A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathol 72(1–3):80–86

    Article  CAS  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008b) Trichoderma plant pathogen interactions. Soil Biol Biochem 40:1–10

    Article  CAS  Google Scholar 

  • Vurukonda SSKP, Vardharajula S, Shrivastava M, Ali SZ (2016) Enhancement of drought stress tolerance in crops by pant growth promoting rhizobacteria. Microbiol Res 184:13–24

    Article  PubMed  Google Scholar 

  • Whitmore L, Wallace BA (2004) The Peptaibol database: a database for sequences and structures of naturally occurring peptaibols. Nucleic Acids Res 32(Database issue):D593–D594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo SL, Ruocco M, Vinale F, Nigro M, Marra R, Lombardi N, Pascale A, Lanzuise S, Manganiello G, Lorito M (2014) Trichoderma-based products and their widespread use in agriculture. Open Mycology J 8:71–126

    Article  Google Scholar 

  • Yadav RL, Shukla SK, Suman A, Singh PN (2009) Trichoderma inoculation and trash management: effects on soil microbial biomass, soil respiration, nutrient uptake and yield of sugarcane under subtropical conditions. Biol Fertil Soils 45:461–468

    Article  Google Scholar 

  • Yasmeen R, Siddiqui ZS (2017) Physiological responses of crop plants against Trichoderma harzianum in saline environment. Acta Bot Croat 76(2):154–162

    Article  CAS  Google Scholar 

  • Yedidia I, Shrivasta AK, Kapulnik Y, Chet I (2001) Effect of Trichoderma harzianum on microelement concentration and increased growth of cucumber plants. Plant Soil 2:235–242

    Article  Google Scholar 

  • Yuan M, Yuanyuan H, Weina GE, Zhenhua J, Song S, Zhang L, Huang Y (2019) Involvement of jasmonic acid, ethylene and salicylic acid signaling pathways behind the systemic resistance induced by Trichoderma longibrachiatum H9 in cucumber. BMC Genomics 20:144

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeilinger S, Gruber S, Bansal R, Mukherjee PK (2016) Secondary metabolism in Trichoderma: chemistry meets genomics. Fungal Biol Rev 30:74–90

    Article  Google Scholar 

  • Zhang S, Gan Y, Xu B (2019) Mechanisms of the IAA and ACC-deaminase producing strain of Trichoderma longibrachiatum T6 in enhancing wheat seedling tolerance to NaCl stress. BMC Plant Biol 19:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang D, Tao T, Wang L, Zhao Y, Huang H, Zhang D, Liu M, Wang Z, Han J (2019) Bioprospecting of novel and bioactive metabolites from Endophytic fungi isolated from rubber tree Ficus elastica leaves. J Microbiol Biotechnol 29(5):731–738

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, N. (2020). Trichoderma as Biostimulant: Factors Responsible for Plant Growth Promotion. In: Manoharachary, C., Singh, H.B., Varma, A. (eds) Trichoderma: Agricultural Applications and Beyond. Soil Biology, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-030-54758-5_13

Download citation

Publish with us

Policies and ethics