Skip to main content

Part of the book series: Progress in Biological Control ((PIBC,volume 21))

Abstract

Highly productive agriculture depends on the application of chemical pesticides which may have negative impacts on human health and the environment. Biological control based on the use of microbial antagonists is a very promising alternative disease control method. Unfortunately, its application at a commercial scale has encountered several difficulties. In addition to financial and regulatory issues, there are two important obstacles in the development of a successful biological control agent: the difficulty of developing a formulation that preserves viability and efficacy for long storage periods and the susceptibility of the microorganism to stressful environmental conditions. In this Chapter, possible solutions are offered to overcome the issues previously described. First of all, the use of modified growth media that favors the accumulation of compatible solutes in the microbial cells can be utilized to obtain formulations with higher tolerance to unfavorable environmental conditions and to dehydration during formulation. Moreover, significant impacts on cell survival and shelf-life can obtained by the use of protectants during the dehydration processes or the use of isotonic solutions for preservation of liquid formulations. Furthermore, the use of coating forming additives mixed with the biological control agent in the treatment broth has proven to have benefits in the colonization and persistence of the microorganism on plant tissues. Finally, two innovative processes that have been developed recently are described: the use of a fluidized-bed spray-dryer to obtain dry formulations with several advantages over the more commonly used spray-drying, freeze drying and fluid bed drying systems and the use of formulations with the ability to form films on plant surfaces without the need of extra additives in the spray mix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadias M, Teixidó N, Usall J, Benabarre A, Viñas I (2001) Viability, efficacy, and storage stability of freeze-dried biocontrol agent Candida sake using different protective and rehydration media. J Food Prot 64:856–861

    Article  CAS  PubMed  Google Scholar 

  • Abadias M, Usall J, Teixidó N, Viñas I (2003) Liquid formulation of the postharvest biocontrol agent Candida sake CPA-1 in isotonic solutions. Phytopathology 93:436–442

    Article  PubMed  Google Scholar 

  • Abadias M, Teixidó N, Usall J, Solsona C, Viñas I (2005) Survival of the postharvest biocontrol yeast Candida sake CPA-1 after dehydration by spray-drying. Biocontrol Sci Tech 15:835–846

    Article  Google Scholar 

  • Accinelli C, Abbas HK, Little NS, Kotowicz JK, Mencarelli M, Shier WT (2016a) A liquid bioplastic formulation for film coating of agronomic seeds. Crop Prot 89:123–128

    Article  CAS  Google Scholar 

  • Accinelli C, Abbas HK, Vicari A, Shier WT (2016b) Leaf application of a sprayable bioplastic-based formulation of biocontrol Aspergillus flavus strains for reduction of aflatoxins in corn. Pest Manag Sci 72:1521–1528

    Article  CAS  PubMed  Google Scholar 

  • Aloui H, Licciardello F, Khwaldia K, Hamdi M, Restuccia C (2015) Physical properties and antifungal activity of bioactive films containing Wickerhamomyces anomalus killer yeast and their application for preservation of oranges and control of postharvest green mold caused by Penicillium digitatum. Int J Food Microbiol 200:22–30

    Article  CAS  PubMed  Google Scholar 

  • Berninger T, González López O, Bejarano A, Preininger C, Sessitsch A (2018) Maintenance and assessment of cell viability in formulation of non-sporulating bacterial inoculants. Microb Biotechnol 11:277–301

    Article  CAS  PubMed  Google Scholar 

  • Bonaterra A, Camps J, Montesinos E (2005) Osmotically induced trehalose and glycine betaine accumulation improves tolerance to desiccation, survival and efficacy of the postharvest biocontrol agent Pantoea agglomerans EPS125. FEMS Microbiol Lett 250:1–8

    Article  CAS  PubMed  Google Scholar 

  • Bonaterra A, Cabrefiga J, Camps J, Montesinos E (2007) Increasing survival and efficacy of a biocontrol agent of fire blight of rosaceous plants by means of osmoadaptation. FEMS Microbiol Ecol 61:185–195

    Article  CAS  PubMed  Google Scholar 

  • Brown AD (1978) Compatible solutes and extreme water stress in eukaryotic microorganisms. Adv Microbiol Physiol 17:181–242

    Article  CAS  Google Scholar 

  • Cabrefiga J, Francés J, Montesinos E, Bonaterra A (2014) Improvement of a dry formulation of Pseudomonas fluorescens EPS62e for fire blight disease biocontrol by combination of culture osmoadaptation with a freeze-drying lyoprotectant. J Appl Microbiol 117:1122–1131

    Article  CAS  PubMed  Google Scholar 

  • Calvo-Garrido C, Elmer P, Viñas I, Usall J, Bartra E, Teixidó N (2013a) Biological control of botrytis bunch rot in organic wine grapes with the yeast antagonist Candida sake CPA-1. Plant Pathol 62:510–519

    Article  Google Scholar 

  • Calvo-Garrido C, Viñas I, Elmer P, Usall J, Teixidó N (2013b) Candida sake CPA-1 and other biologically based products as potential control strategies to reduce sour rot of grapes. Lett Appl Microbiol 57:356–361

    CAS  PubMed  Google Scholar 

  • Calvo-Garrido C, Teixidó N, Roudet J, Viñas I, Usall J, Fermaud M (2014a) Biological control of Botrytis bunch rot in Atlantic climate vineyards with Candida sake CPA-1 and its survival under limiting conditions of temperature and humidity. Biol Control 79:24–35

    Article  Google Scholar 

  • Calvo-Garrido C, Viñas I, Usall J, Rodríguez-Romera M, Ramos MC, Teixidó N (2014b) Survival of the biological control agent Candida sake CPA-1 on grapes under the influence of abiotic factors. J Appl Microbiol 117:800–811

    Article  CAS  PubMed  Google Scholar 

  • Calvo-Garrido C, Usall J, Torres R, Teixidó N (2017) Effective control of Botrytis bunch rot in commercial vineyards by large-scale application of Candida sake CPA-1. BioControl 62:161–173

    Article  Google Scholar 

  • Cañamás TP, Viñas I, Usall J, Magan N, Morelló JR, Teixidó N (2007) Relative importance of amino acids, glycine-betaine and ectoine synthesis in the biocontrol agent Pantoea agglomerans CPA-2 in response to osmotic, acidic and heat stress. Lett Appl Microbiol 45:6–12

    Article  PubMed  CAS  Google Scholar 

  • Cañamás TP, Viñas I, Usall J, Casals C, Solsona C, Teixidó N (2008a) Control of postharvest diseases on citrus fruit by preharvest application of the biocontrol agent Pantoea aglomerans CPA-2. Part I. Study of different formulation strategies to improve survival of cells in unfavourable environmental conditions. Postharvest Biol Technol 49:86–95

    Article  Google Scholar 

  • Cañamás TP, Viñas I, Usall J, Magan N, Solsona C, Teixidó N (2008b) Impact of mild heat treatments on induction of thermotolerance in the biocontrol yeast Candida sake CPA-1 and viability after spray-drying. J Appl Microbiol 104:767–775

    Article  PubMed  Google Scholar 

  • Cañamás TP, Viñas I, Usall J, Torres R, Anguera M, Teixidó N (2008c) Control of postharvest diseases on citrus fruit by preharvest applications of biocontrol agent Pantoea agglomerans CPA-2. Part II. Effectiveness of different cell formulations. Postharvest Biol Technol 49:96–106

    Article  Google Scholar 

  • Cañamás TP, Viñas I, Abadias M, Usall J, Torres R, Teixidó N (2009) Acid tolerance response induced in the biocontrol agent Pantoea agglomerans CPA-2 and effect on its survival ability in acidic environments. Microbiol Res 164:438–450

    Article  PubMed  CAS  Google Scholar 

  • Cañamás TP, Viñas I, Torres R, Usall J, Solsona C, Teixidó N (2011) Field applications of improved formulations of Candida sake CPA-1 for control of Botrytis cinerea in grapes. Biol Control 56:150–158

    Article  Google Scholar 

  • Carbó A, Torres R, Usall J, Solsona C, Teixidó N (2017) Fluidised-bed spray-drying formulations of Candida sake CPA-1 by adding biodegradable coatings to enhance their survival under stress conditions. Appl Microbiol Biotechnol 101:7865–7876

    Article  PubMed  CAS  Google Scholar 

  • Carbó A, Torres R, Teixidó N, Usall J, Magan N, Medina A (2018a) Predicted ecological niches and environmental resilience of different formulations of the biocontrol yeast Candida sake CPA-1 using Bioscreen C. BioControl 63:855–866

    Article  CAS  Google Scholar 

  • Carbó A, Torres R, Teixidó N, Usall J, Medina A, Magan N (2018b) Impact of climate change environmental conditions on the resilience of different formulations of the biocontrol agent Candida sake CPA-1 on grapes. Lett Appl Microbiol 67:2–8

    Article  PubMed  CAS  Google Scholar 

  • Carbó A, Teixidó N, Usall J, Solsona C, Torres R (2019a) Shelf life improvement of the biocontrol agent Candida sake CPA-1 by suitable package and storage conditions. BioControl 64:435–446

    Article  CAS  Google Scholar 

  • Carbó A, Teixidó N, Usall J, Torres R (2019b) Verifying the biocontrol activity of novel film-forming formulations of Candida sake CPA-1: resilience in relation to environmental factors, rainfall episodes, and control of Botrytis cinerea on different hosts. J Sci Food Agric 99:4969–4976

    Article  PubMed  CAS  Google Scholar 

  • Carbó A, Torres R, Usall J, Marín A, Chiralt A, Teixidó N (2019c) Novel film-forming formulations of the biocontrol agent Candida sake CPA-1: biocontrol efficacy and performance at field conditions in organic wine grapes. Pest Manag Sci 75:959–968

    Article  PubMed  CAS  Google Scholar 

  • Costa E, Teixidó N, Usall J, Fons E, Gimeno V, Delgado J, Viñas I (2002) Survival of Pantoea agglomerans strain CPA-2 in a spray-drying process. J Food Prot 65:185–191

    Article  CAS  PubMed  Google Scholar 

  • Csonka LN (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53:121–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daranas N, Badosa E, Francés J, Montesinos E, Bonaterra A (2018) Enhancing water stress tolerance improves fitness in biological control strains of Lactobacillus plantarum in plant environments. PLoS One 13(1):e0190931

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Droby S, Wisniewski M, Macarisin D, Wilson C (2009) Twenty years of postharvest biocontrol research: is it time for a new paradigm? Postharvest Biol Technol 52:137–145

    Article  Google Scholar 

  • Droby S, Wisniewski M, Teixidó N, Spadaro D, Jijakli MH (2016) The science, development, and commercialization of postharvest biocontrol products. Postharvest Biol Technol 122:4–11

    Google Scholar 

  • Dukare AS, Paul S, Nambi VE, Gupta RK, Singh R, Sharma K, Vishwakarma RK (2019) Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review. Crit Rev Food Sci Nutr 59:1498–1513

    Article  CAS  PubMed  Google Scholar 

  • Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359

    Article  CAS  PubMed  Google Scholar 

  • Fravel DR, Connick WJ Jr, Lewis JA (1998) Formulation of microorganisms to control plant diseases. In: Burges HD (ed) Formulation of microbial biopesticides: beneficial microorganisms, nematodes and seed treatments. Kluwer Academic Publishers, Dordrecht, pp 187–202

    Chapter  Google Scholar 

  • Gasperini AM, Rodriguez-Sixtos A, Verheecke-Vaessen C, Garcia-Cela E, Medina A, Magan N (2019) Resilience of Biocontrol for Aflatoxin Minimization Strategies: Climate Change Abiotic Factors May Affect Control in Non-GM and GM-Maize Cultivars. Frontiers in Microbiology 10

    Google Scholar 

  • González-Estrada RR, Carvajal-Millán E, Ragazzo-Sánchez JA, Bautista-Rosales PU, Calderón-Santoyo M (2017) Control of blue mold decay on Persian lime: application of covalently cross-linked arabinoxylans bioactive coatings with antagonistic yeast entrapped. LWT-Food Sci Technol 85:187–196

    Article  CAS  Google Scholar 

  • Gotor-Vila A, Usall J, Torres R, Abadias M, Teixidó N (2017) Formulation of the biocontrol agent Bacillus amyloliquefaciens CPA-8 using different approaches: liquid, freeze-drying and fluid-bed spray-drying. BioControl 62:545–555

    Article  CAS  Google Scholar 

  • Guijarro B, Melgarejo P, De Cal A (2008) Influence of additives on adhesion of Penicillium frequentans conidia to peach fruit surfaces and relationship to the biocontrol of brown rot caused by Monilinia laxa. Int J Food Microbiol 126:24–29

    Article  CAS  PubMed  Google Scholar 

  • Hallsworth JE, Magan N (1995) Manipulation of intracellular glycerol and erytrhitol enhances germination of conidia at lower water availability. Microbiology 141:1109–1115

    Article  CAS  PubMed  Google Scholar 

  • Harman GE, Jin X, Stasz TE, Peruzotti G, Leopold AC, Taylor AG (1991) Production of conidial biomass of Trichoderma harzianum for biological control. Biol Control 1:23–28

    Article  Google Scholar 

  • Hocking AD (1986) Effects of water activity and culture age on the glycerol accumulation patterns of five fungi. J Gen Microbiol 132:269–275

    CAS  Google Scholar 

  • Ignoffo CM, Hostetter DL, Sikorowski PP, Sutter G, Brooks WM (1977) Inactivation of representative species of entomopathogenic viruses, a bacterium, fungus, and protozoan by an ultraviolet light source. Environ Entomol 6:411–415

    Article  Google Scholar 

  • Inglis GD, Goettel MS, Johnson DL (1995) Influence of ultraviolet light protectans on persistence of the entomopathogenic fungus, Beauveria bassiana. Biol Control 5:581–590

    Article  Google Scholar 

  • Jones KA, Burges HD (1998) Technology of formulation and application. In: Burges HD (ed) Formulation of microbial biopesticides: beneficial microorganisms, nematodes and seed treatments. Springer, Dordrecht, pp 7–30

    Chapter  Google Scholar 

  • Köhl J, Kolnaar R, Ravensberg WJ (2019) Mode of Action of Microbial Biological Control Agents Against Plant Diseases: Relevance Beyond Efficacy. Frontiers in Plant Science 10

    Google Scholar 

  • Lahlali R, Jijakli MH (2009) Enhancement of the biocontrol agent Candida oleophila (strain O) survival and control efficiency under extreme conditions of water activity and relative humidity. Biol Control 51:403–408

    Article  Google Scholar 

  • Lahlali R, Brostaux Y, Jijakli M (2011) Control of apple blue mold by the antagonistic yeast Pichia anomala strain K: screening of UV protectants for preharvest application. Plant Dis 95:311–316

    Article  PubMed  Google Scholar 

  • Leggett M, Leland J, Kellar K, Epp B (2011) Formulation of microbial biocontrol agents–an industrial perspective. Can J Plant Pathol 33:101–107

    Article  CAS  Google Scholar 

  • Li BQ, Tian SP (2006) Effects of trehalose on stress tolerance and biocontrol efficacy of Cryptococcus laurentii. J Appl Microbiol 100:854–861

    Article  CAS  PubMed  Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Tian SP, Li BQ, Qin GZ (2009) Enhancing viability of two biocontrol yeasts in liquid formulation by applying sugar protectant combined with antioxidant. BioControl 54:817–824

    Article  CAS  Google Scholar 

  • Liu J, Wisniewski M, Droby S, Tian S, Hershkovitz V, Tworkoski T (2011) Effect of heat shock treatment on stress tolerance and biocontrol efficacy of Metschnikowia fructicola. FEMS Microbiol Ecol 76:145–155

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Wisniewski M, Droby S, Norelli J, Hershkovitz V, Tian S, Farrell R (2012) Increase in antioxidant gene transcripts, stress tolerance and biocontrol efficacy of Candida oleophila following sublethal oxidative stress exposure. FEMS Microbiol Ecol 80:578–590

    Article  CAS  PubMed  Google Scholar 

  • Marín A, Cháfer M, Atarés L, Chiralt A, Torres R, Usall J, Teixidó N (2016) Effect of different coating-forming agents on the efficacy of the biocontrol agent Candida sakeCPA-1 for control of Botrytis cinerea on grapes. Biol Control 96:108–119

    Google Scholar 

  • Marín A, Atarés L, Chiralt A (2017) Improving function of biocontrol agents incorporated in antifungal fruit coatings: a review. Biocontrol Sci Tech 27:1220–1241

    Article  Google Scholar 

  • Melin P, Håkansson S, Schnürer J (2007) Optimisation and comparison of liquid and dry formulations of the biocontrol yeast Pichia anomala J121. Appl Microbiol Biotechnol 73:1008–1016

    Article  CAS  PubMed  Google Scholar 

  • Nunes CA (2012) Biological control of postharvest diseases of fruit. Eur J Plant Pathol 133:181–196

    Article  Google Scholar 

  • Ortega-Toro R, Jiménez A, Talens P, Chiralt A (2014) Effect of the incorporation of surfactants on the physical properties of corn starch films. Food Hydrocoll 38:66–75

    Article  CAS  Google Scholar 

  • Pertot I, Caffi T, Rossi V, Mugnai L, Hoffmann C, Grando MS, Gary C, Lafond D, Duso C, Thiery D, Mazzoni V, Anfora G (2017) A critical review of plant protection tools for reducing pesticide use on grapevine and new perspectives for the implementation of IPM in viticulture. Crop Prot 97:70–84

    Article  CAS  Google Scholar 

  • Pletnev P, Osterman I, Sergiev P, Bogdanov A, Dontsova O (2015) Survival guide: Escherichia coli in the stationary phase. Acta Nat 7:22–33

    Article  CAS  Google Scholar 

  • Pujol M, Badosa E, Montesinos E (2007) Epiphytic fitness of a biological control agent of fire blight in apple and pear orchards under Mediterranean weather conditions. FEMS Microbiol Ecol 59:186–193

    Article  CAS  PubMed  Google Scholar 

  • Pusey PL (1994) Enhancement of biocontrol agents for postharvest diseases and their integration with other control strategies. In: Wilson CL, Wisniewski MD (eds) Biological control of postharvest diseases - theory and practice. CRC Press, Boca Raton, pp 77–88

    Google Scholar 

  • Ravensberg W (2011) A roadmap to the successful development and commercialization of microbial pest control products for control of arthropods. Springer, Dordrecht

    Book  Google Scholar 

  • Rhodes DJ (1993) Formulation of biological control agents. In: Jones DG (ed) Exploitation of microorganisms. Chapman and Hall, London, pp 411–439

    Chapter  Google Scholar 

  • Russell AD (1991) Mechanisms of bacterial resistance to non-antibiotics: food additives and food and pharmaceutical preservatives. J Appl Bacteriol 71:191–201

    Article  CAS  PubMed  Google Scholar 

  • Santivarangkna C, Kulozik U, Foerst P (2007) Alternative drying processes for the industrial preservation of lactic acid starter cultures. Biotechnol Prog 23:302–315

    Article  CAS  PubMed  Google Scholar 

  • Schisler DA, Slininger PJ, Behle RW, Jackson MA (2004) Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology 94:1267–1271

    Article  CAS  PubMed  Google Scholar 

  • Segarra G, Puopolo G, Giovannini O, Pertot I (2015) Stepwise flow diagram for the development of formulations of non spore-forming bacteria against foliar pathogens: the case of Lysobacter capsici AZ78. J Biotechnol 216:56–64

    Article  CAS  PubMed  Google Scholar 

  • Strange RE, Cox CS (1976) Survival of dried and airborne bacteria. In: Gray TRG, Postgate JR (eds) The survival of vegetative microbes. Cambridge University Press, Cambridge, pp 111–154

    Google Scholar 

  • Strasser S, Neureiter M, Geppl M, Braun R, Danner H (2009) Influence of lyophilization, fluidized bed drying, addition of protectants, and storage on the viability of lactic acid bacteria. J Appl Microbiol 107:167–177

    Article  CAS  PubMed  Google Scholar 

  • Sui Y, Wisniewski M, Droby S, Liu J (2015) Responses of yeast biocontrol agents to environmental stress. Appl Environ Microbiol 81:2968–2975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teixidó N, Viñas I, Usall J, Magan N (1998a) Improving ecological fitness and environmental stress tolerance of the biocontrol yeast Candida sake by manipulation of intracellular sugar alcohol and sugar content. Mycol Res 102:1409–1417

    Article  Google Scholar 

  • Teixidó N, Viñas I, Usall J, Sanchis V, Magan N (1998b) Ecophysiological responses of the biocontrol yeast Candida sake to water, temperature and pH stress. J Appl Microbiol 84:192–200

    Article  Google Scholar 

  • Teixidó N, Viñas I, Usall J, Magan N (1998c) Control of blue mold of apples by preharvest application of Candida sake grown in media with different water activity. Phytopathology 88:960–964

    Article  PubMed  Google Scholar 

  • Teixidó N, Cañamás TP, Usall J, Torres R, Magan N, Viñas I (2005) Accumulation of the compatible solutes, glycine-betaine and ectoine, in osmotic stress adaptation and heat shock cross-protection in the biocontrol agent Pantoea agglomerans CPA-2. Lett Appl Microbiol 41:248–252

    Article  PubMed  CAS  Google Scholar 

  • Teixidó N, Cañamás TP, Abadias M, Usall J, Solsona C, Casals C, Viñas I (2006) Improving low water activity and desiccation tolerance of the biocontrol agent Pantoea agglomerans CPA-2 by osmotic treatments. J Appl Microbiol 101:927–937

    Article  PubMed  Google Scholar 

  • Teixidó N, Torres R, Viñas I, Abadias M, Usall J (2011) Biological control of postharvest diseases in fruit and vegetables. In: Lacroix C (ed) Protective cultures, antimicrobial metabolites and bacteriophages for food and beverage biopreservation. Elsevier, Cambridge, pp 364–402

    Chapter  Google Scholar 

  • Usall J, Torres R, Teixidó N (2016) Biological control of postharvest diseases on fruit: a suitable alternative? Curr Opin Food Sci 11:51–55

    Article  Google Scholar 

  • Van Eck JH, Prior BA, Brandt EV (1993) The water relations of growth and polyhydroxy alcohol production by ascomycetous yeasts. J Gen Microbiol 139:1047–1054

    Article  Google Scholar 

  • Vargas M, Pastor C, Chiralt A, McClements DJ, González-Martínez C (2008) Recent advances in edible coatings for fresh and minimally processed fruits. Crit Rev Food Sci Nutr 48:496–511

    Article  CAS  PubMed  Google Scholar 

  • Yánez-Mendizábal V, Viñas I, Usall J, Cañamás T, Teixidó N (2012a) Endospore production allows using spray-drying as a possible formulation system of the biocontrol agent Bacillus subtilis CPA-8. Biotechnol Lett 34:729–735

    Article  PubMed  CAS  Google Scholar 

  • Yánez-Mendizábal V, Viñas I, Usall J, Torres R, Solsona C, Abadias M, Teixidó N (2012b) Formulation development of the biocontrol agent Bacillus subtilis strain CPA-8 by spray-drying. J Appl Microbiol 112:954–965

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neus Teixidó .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Teixidó, N., Segarra, G., Casals, C., Usall, J., Torres, R. (2020). Formulations to Improve Biocontrol Products Shelf-Life and/or Ecosystem Adaptation. In: De Cal, A., Melgarejo, P., Magan, N. (eds) How Research Can Stimulate the Development of Commercial Biological Control Against Plant Diseases. Progress in Biological Control, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-030-53238-3_15

Download citation

Publish with us

Policies and ethics