Skip to main content

HIF-1α Metabolic Pathways in Human Cancer

  • Chapter
  • First Online:
Cancer Metabolomics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1280))

Abstract

Oxygen is directly involved in many key pathophysiological processes. Oxygen deficiency, also known as hypoxia, could have adverse effects on mammalian cells, with ischemia in vital tissues being the most significant (Michiels C. Physiological and pathological responses to hypoxia. Am J Pathol 164(6): 1875–1882, 2004); therefore, timely adaptive responses to variations in oxygen availability are essential for cellular homeostasis and survival. The most critical molecular event in hypoxic response is the activation and stabilization of a transcriptional factor termed hypoxia-induced factor-1 (HIF-1) that is responsible for the upregulation of many downstream effector genes, collectively known as hypoxia-responsive genes. Multiple key biological pathways such as proliferation, energy metabolism, invasion, and metastasis are governed by these genes; thus, HIF-1-mediated pathways are equally pivotal in both physiology and pathology.

As we gain knowledge on the molecular mechanisms underlying the regulation of HIF-1, a great focus has been placed on elucidating the cellular function of HIF-1, particularly the role of HIF-1 in cancer pathogenesis pathways such as proliferation, invasion, angiogenesis, and metastasis. In cancer, HIF-1 is directly involved in the shift of cancer tissues from oxidative phosphorylation to aerobic glycolysis, a phenomenon known as the Warburg effect. Although targeting HIF-1 as a cancer therapy seems like an extremely rational approach, owing to the complex network of its downstream effector genes, the development of specific HIF-1 inhibitors with fewer side effects and more specificity has not been achieved. Therefore, in this review, we provide a brief background about the function of HIF proteins in hypoxia response with a special emphasis on the unique role played by HIF-1α in cancer growth and invasiveness, in the hypoxia response context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Michiels, C. (2004). Physiological and pathological responses to hypoxia. The American Journal of Pathology, 164(6), 1875–1882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Warren, S. M., et al. (2001). Hypoxia regulates osteoblast gene expression. The Journal of Surgical Research, 99(1), 147–155.

    Article  CAS  PubMed  Google Scholar 

  3. Cramer, T., et al. (2003). HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell, 112(5), 645–657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hochachka, P. W., et al. (1996). Unifying theory of hypoxia tolerance: Molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proceedings of the National Academy of Sciences of the United States of America, 93(18), 9493–9498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Denko, N., et al. (2003). Hypoxia actively represses transcription by inducing negative cofactor 2 (Dr1/DrAP1) and blocking preinitiation complex assembly. The Journal of Biological Chemistry, 278(8), 5744–5749.

    Article  CAS  PubMed  Google Scholar 

  6. Manalo, D. J., et al. (2005). Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood, 105(2), 659–669.

    Article  CAS  PubMed  Google Scholar 

  7. Semenza, G. L. (1998). Hypoxia-inducible factor 1: Master regulator of O2 homeostasis. Current Opinion in Genetics & Development, 8(5), 588–594.

    Article  CAS  Google Scholar 

  8. Wenger, R. H. (2002). Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. The FASEB Journal, 16(10), 1151–1162.

    Article  CAS  PubMed  Google Scholar 

  9. Iyer, N. V., et al. (1998). Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes & Development, 12(2), 149–162.

    Article  CAS  Google Scholar 

  10. Ryan, H. E., Lo, J., & Johnson, R. S. (1998). HIF-1 alpha is required for solid tumor formation and embryonic vascularization. The EMBO Journal, 17(11), 3005–3015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Semenza, G. L. (2003). Targeting HIF-1 for cancer therapy. Nature Reviews. Cancer, 3(10), 721–732.

    Article  CAS  PubMed  Google Scholar 

  12. Schofield, C. J., & Ratcliffe, P. J. (2004). Oxygen sensing by HIF hydroxylases. Nature Reviews. Molecular Cell Biology, 5(5), 343–354.

    Article  CAS  PubMed  Google Scholar 

  13. Semenza, G. L., et al. (1991). Hypoxia-inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene. Proceedings of the National Academy of Sciences of the United States of America, 88(13), 5680–5684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Semenza, G. L., & Wang, G. L. (1992). A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Molecular and Cellular Biology, 12(12), 5447–5454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, G. L., & Semenza, G. L. (1993). Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. The Journal of Biological Chemistry, 268(29), 21513–21518.

    Article  CAS  PubMed  Google Scholar 

  16. Wang, G. L., & Semenza, G. L. (1993). General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 90(9), 4304–4308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Richard, D. E., et al. (1999). p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1alpha (HIF-1alpha) and enhance the transcriptional activity of HIF-1. Journal of Biological Chemistry, 274(46), 32631–32637.

    Article  CAS  PubMed  Google Scholar 

  18. Carrero, P., et al. (2000). Redox-regulated recruitment of the transcriptional coactivators CREB-binding protein and SRC-1 to hypoxia-inducible factor 1alpha. Molecular and Cellular Biology, 20(1), 402–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Duan, C. (2016). Hypoxia-inducible factor 3 biology: Complexities and emerging themes. American Journal of Physiology. Cell Physiology, 310(4), C260–C269.

    Article  PubMed  Google Scholar 

  20. Wang, G. L., et al. (1995). Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proceedings of the National Academy of Sciences of the United States of America, 92(12), 5510–5514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ema, M., et al. (1997). A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proceedings of the National Academy of Sciences of the United States of America, 94(9), 4273–4278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Flamme, I., et al. (1997). HRF, a putative basic helix-loop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1 alpha and developmentally expressed in blood vessels. Mechanisms of Development, 63(1), 51–60.

    Article  CAS  PubMed  Google Scholar 

  23. Hogenesch, J. B., et al. (1997). Characterization of a subset of the basic-helix-loop-helix-PAS superfamily that interacts with components of the dioxin signaling pathway. The Journal of Biological Chemistry, 272(13), 8581–8593.

    Article  CAS  PubMed  Google Scholar 

  24. Tian, H., McKnight, S. L., & Russell, D. W. (1997). Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes & Development, 11(1), 72–82.

    Article  CAS  Google Scholar 

  25. Huang, L. E., et al. (1996). Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. The Journal of Biological Chemistry, 271(50), 32253–32259.

    Article  CAS  PubMed  Google Scholar 

  26. Jiang, B. H., et al. (1997). Transactivation and inhibitory domains of hypoxia-inducible factor 1alpha. Modulation of transcriptional activity by oxygen tension. The Journal of Biological Chemistry, 272(31), 19253–19260.

    Article  CAS  PubMed  Google Scholar 

  27. Salceda, S., & Caro, J. (1997). Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. The Journal of Biological Chemistry, 272(36), 22642–22647.

    Article  CAS  PubMed  Google Scholar 

  28. Jiang, B. H., et al. (1997). V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: Involvement of HIF-1 in tumor progression. Cancer Research, 57(23), 5328–5335.

    CAS  PubMed  Google Scholar 

  29. Chilov, D., et al. (1999). Induction and nuclear translocation of hypoxia-inducible factor-1 (HIF-1): Heterodimerization with ARNT is not necessary for nuclear accumulation of HIF-1alpha. Journal of Cell Science, 112(Pt 8), 1203–1212.

    CAS  PubMed  Google Scholar 

  30. Wood, S. M., et al. (1996). The role of the aryl hydrocarbon receptor nuclear translocator (ARNT) in hypoxic induction of gene expression. Studies in ARNT-deficient cells. The Journal of Biological Chemistry, 271(25), 15117–15123.

    Article  CAS  PubMed  Google Scholar 

  31. Maltepe, E., et al. (1997). Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature, 386(6623), 403–407.

    Article  CAS  PubMed  Google Scholar 

  32. Swanson, H. I., & Bradfield, C. A. (1993). The AH-receptor: Genetics, structure and function. Pharmacogenetics, 3(5), 213–230.

    Article  CAS  PubMed  Google Scholar 

  33. Rowlands, J. C., & Gustafsson, J. A. (1997). Aryl hydrocarbon receptor-mediated signal transduction. Critical Reviews in Toxicology, 27(2), 109–134.

    Article  CAS  PubMed  Google Scholar 

  34. Bruick, R. K., & McKnight, S. L. (2001). A conserved family of prolyl-4-hydroxylases that modify HIF. Science, 294(5545), 1337–1340.

    Article  CAS  PubMed  Google Scholar 

  35. Jeong, J. W., et al. (2002). Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell, 111(5), 709–720.

    Article  CAS  PubMed  Google Scholar 

  36. Gradin, K., et al. (1996). Functional interference between hypoxia and dioxin signal transduction pathways: Competition for recruitment of the Arnt transcription factor. Molecular and Cellular Biology, 16(10), 5221–5231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang, L. E., et al. (1998). Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proceedings of the National Academy of Sciences of the United States of America, 95(14), 7987–7992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pugh, C. W., et al. (1997). Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit. The Journal of Biological Chemistry, 272(17), 11205–11214.

    Article  CAS  PubMed  Google Scholar 

  39. O’Rourke, J. F., et al. (1999). Oxygen-regulated and transactivating domains in endothelial PAS protein 1: Comparison with hypoxia-inducible factor-1α. Journal of Biological Chemistry, 274(4), 2060–2071.

    Article  PubMed  Google Scholar 

  40. Srinivas, V., et al. (1999). Characterization of an oxygen/redox-dependent degradation domain of hypoxia-inducible factor alpha (HIF-alpha) proteins. Biochemical and Biophysical Research Communications, 260(2), 557–561.

    Article  CAS  PubMed  Google Scholar 

  41. Dayan, F., et al. (2008). A dialogue between the hypoxia-inducible factor and the tumor microenvironment. Cancer Microenvironment, 1(1), 53–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Wiesener, M. S., et al. (2003). Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. The FASEB Journal, 17(2), 271–273.

    Article  CAS  PubMed  Google Scholar 

  43. Onita, T., et al. (2002). Hypoxia-induced, perinecrotic expression of endothelial per-ARNT-Sim domain protein-1/hypoxia-inducible factor-2alpha correlates with tumor progression, vascularization, and focal macrophage infiltration in bladder cancer. Clinical Cancer Research, 8(2), 471–480.

    CAS  PubMed  Google Scholar 

  44. Keith, B., Johnson, R. S., & Simon, M. C. (2011). HIF1alpha and HIF2alpha: Sibling rivalry in hypoxic tumour growth and progression. Nature Reviews. Cancer, 12(1), 9–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Leek, R. D., et al. (2002). Relation of hypoxia-inducible factor-2 alpha (HIF-2 alpha) expression in tumor-infiltrative macrophages to tumor angiogenesis and the oxidative thymidine phosphorylase pathway in human breast cancer. Cancer Research, 62(5), 1326–1329.

    CAS  PubMed  Google Scholar 

  46. Wiesener, M. S., et al. (1998). Induction of endothelial PAS domain protein-1 by hypoxia: Characterization and comparison with hypoxia-inducible factor-1alpha. Blood, 92(7), 2260–2268.

    Article  CAS  PubMed  Google Scholar 

  47. Stewart, M., et al. (2002). Expression of angiogenic factors and hypoxia inducible factors HIF 1, HIF 2 and CA IX in non-Hodgkin’s lymphoma. Histopathology, 40(3), 253–260.

    Article  CAS  PubMed  Google Scholar 

  48. Fukumura, D., et al. (1998). Tumor induction of VEGF promoter activity in stromal cells. Cell, 94(6), 715–725.

    Article  CAS  PubMed  Google Scholar 

  49. Flamme, I., Krieg, M., & Plate, K. H. (1998). Up-regulation of vascular endothelial growth factor in stromal cells of hemangioblastomas is correlated with up-regulation of the transcription factor HRF/HIF-2alpha. The American Journal of Pathology, 153(1), 25–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Giatromanolaki, A., et al. (2001). Relation of hypoxia inducible factor 1 alpha and 2 alpha in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival. British Journal of Cancer, 85(6), 881–890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xia, G., et al. (2001). Regulation of vascular endothelial growth factor transcription by endothelial PAS domain protein 1 (EPAS1) and possible involvement of EPAS1 in the angiogenesis of renal cell carcinoma. Cancer, 91(8), 1429–1436.

    Article  CAS  PubMed  Google Scholar 

  52. Favier, J., et al. (2002). Angiogenesis and vascular architecture in pheochromocytomas: Distinctive traits in malignant tumors. The American Journal of Pathology, 161(4), 1235–1246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mazumdar, J., et al. (2010). HIF-2alpha deletion promotes Kras-driven lung tumor development. Proceedings of the National Academy of Sciences of the United States of America, 107(32), 14182–14187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim, W. Y., et al. (2009). HIF2alpha cooperates with RAS to promote lung tumorigenesis in mice. The Journal of Clinical Investigation, 119(8), 2160–2170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Makino, Y., et al. (2002). Inhibitory PAS domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible factor-3alpha locus. The Journal of Biological Chemistry, 277(36), 32405–32408.

    Article  CAS  PubMed  Google Scholar 

  56. Hara, S., et al. (2001). Expression and characterization of hypoxia-inducible factor (HIF)-3alpha in human kidney: Suppression of HIF-mediated gene expression by HIF-3alpha. Biochemical and Biophysical Research Communications, 287(4), 808–813.

    Article  CAS  PubMed  Google Scholar 

  57. Maynard, M. A., et al. (2003). Multiple splice variants of the human HIF-3 alpha locus are targets of the von Hippel-Lindau E3 ubiquitin ligase complex. The Journal of Biological Chemistry, 278(13), 11032–11040.

    Article  CAS  PubMed  Google Scholar 

  58. Maynard, M. A., et al. (2007). Dominant-negative HIF-3 alpha 4 suppresses VHL-null renal cell carcinoma progression. Cell Cycle, 6(22), 2810–2816.

    Article  CAS  PubMed  Google Scholar 

  59. Tanaka, T., et al. (2009). The human HIF (hypoxia-inducible factor)-3alpha gene is a HIF-1 target gene and may modulate hypoxic gene induction. The Biochemical Journal, 424(1), 143–151.

    Article  CAS  PubMed  Google Scholar 

  60. Heikkila, M., et al. (2011). Roles of the human hypoxia-inducible factor (HIF)-3alpha variants in the hypoxia response. Cellular and Molecular Life Sciences, 68(23), 3885–3901.

    Article  CAS  PubMed  Google Scholar 

  61. Michaud, J. L., et al. (2000). ARNT2 acts as the dimerization partner of SIM1 for the development of the hypothalamus. Mechanisms of Development, 90(2), 253–261.

    Article  CAS  PubMed  Google Scholar 

  62. Wang, G. L., & Semenza, G. L. (1995). Purification and characterization of hypoxia-inducible factor 1. The Journal of Biological Chemistry, 270(3), 1230–1237.

    Article  CAS  PubMed  Google Scholar 

  63. Keith, B., Adelman, D. M., & Simon, M. C. (2001). Targeted mutation of the murine arylhydrocarbon receptor nuclear translocator 2 (Arnt2) gene reveals partial redundancy with Arnt. Proceedings of the National Academy of Sciences of the United States of America, 98(12), 6692–6697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Drutel, G., et al. (1996). Cloning and selective expression in brain and kidney of ARNT2 homologous to the Ah receptor nuclear translocator (ARNT). Biochemical and Biophysical Research Communications, 225(2), 333–339.

    Article  CAS  PubMed  Google Scholar 

  65. Hirose, K., et al. (1996). cDNA cloning and tissue-specific expression of a novel basic helix-loop-helix/PAS factor (Arnt2) with close sequence similarity to the aryl hydrocarbon receptor nuclear translocator (Arnt). Molecular and Cellular Biology, 16(4), 1706–1713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang, G. L., & Semenza, G. L. (1996). Molecular basis of hypoxia-induced erythropoietin expression. Current Opinion in Hematology, 3(2), 156–162.

    Article  CAS  PubMed  Google Scholar 

  67. Camps, C., et al. (2014). Integrated analysis of microRNA and mRNA expression and association with HIF binding reveals the complexity of microRNA expression regulation under hypoxia. Molecular Cancer, 13, 28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Kelly, B. D., et al. (2003). Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circulation Research, 93(11), 1074–1081.

    Article  CAS  PubMed  Google Scholar 

  69. Yun, Z., et al. (2002). Inhibition of PPAR gamma 2 gene expression by the HIF-1-regulated gene DEC1/Stra13: A mechanism for regulation of adipogenesis by hypoxia. Developmental Cell, 2(3), 331–341.

    Article  CAS  PubMed  Google Scholar 

  70. Balamurugan, K. (2016). HIF-1 at the crossroads of hypoxia, inflammation, and cancer. International Journal of Cancer, 138(5), 1058–1066.

    Article  CAS  PubMed  Google Scholar 

  71. Liu, W., et al. (2012). Targeted genes and interacting proteins of hypoxia inducible factor-1. International Journal of Biochemistry and Molecular Biology, 3(2), 165–178.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Pouyssegur, J., Dayan, F., & Mazure, N. M. (2006). Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature, 441(7092), 437–443.

    Article  CAS  PubMed  Google Scholar 

  73. Zelzer, E., et al. (1998). Insulin induces transcription of target genes through the hypoxia-inducible factor HIF-1alpha/ARNT. The EMBO Journal, 17(17), 5085–5094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Feldser, D., et al. (1999). Reciprocal positive regulation of hypoxia-inducible factor 1alpha and insulin-like growth factor 2. Cancer Research, 59(16), 3915–3918.

    CAS  PubMed  Google Scholar 

  75. Hellwig-Burgel, T., et al. (1999). Interleukin-1beta and tumor necrosis factor-alpha stimulate DNA binding of hypoxia-inducible factor-1. Blood, 94(5), 1561–1567.

    Article  CAS  PubMed  Google Scholar 

  76. Laughner, E., et al. (2001). HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: Novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Molecular and Cellular Biology, 21(12), 3995–4004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fukuda, R., et al. (2002). Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. The Journal of Biological Chemistry, 277(41), 38205–38211.

    Article  CAS  PubMed  Google Scholar 

  78. Zhong, H., et al. (2000). Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: Implications for tumor angiogenesis and therapeutics. Cancer Research, 60(6), 1541–1545.

    CAS  PubMed  Google Scholar 

  79. Sang, N., et al. (2003). MAPK signaling up-regulates the activity of hypoxia-inducible factors by its effects on p300. The Journal of Biological Chemistry, 278(16), 14013–14019.

    Article  CAS  PubMed  Google Scholar 

  80. Mylonis, I., et al. (2006). Identification of MAPK phosphorylation sites and their role in the localization and activity of hypoxia-inducible factor-1alpha. The Journal of Biological Chemistry, 281(44), 33095–33106.

    Article  CAS  PubMed  Google Scholar 

  81. Page, E. L., et al. (2002). Induction of hypoxia-inducible factor-1alpha by transcriptional and translational mechanisms. The Journal of Biological Chemistry, 277(50), 48403–48409.

    Article  CAS  PubMed  Google Scholar 

  82. Kalousi, A., et al. (2010). Casein kinase 1 regulates human hypoxia-inducible factor HIF-1. Journal of Cell Science, 123(Pt 17), 2976–2986.

    Article  CAS  PubMed  Google Scholar 

  83. To, K. K., et al. (2006). The phosphorylation status of PAS-B distinguishes HIF-1alpha from HIF-2alpha in NBS1 repression. The EMBO Journal, 25(20), 4784–4794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Maxwell, P. H., et al. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature, 399(6733), 271–275.

    Article  CAS  PubMed  Google Scholar 

  85. Mailloux, R. J., Puiseux-Dao, S., & Appanna, V. D. (2009). Alpha-ketoglutarate abrogates the nuclear localization of HIF-1alpha in aluminum-exposed hepatocytes. Biochimie, 91(3), 408–415.

    Article  CAS  PubMed  Google Scholar 

  86. Lando, D., et al. (2002). FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes & Development, 16(12), 1466–1471.

    Article  CAS  Google Scholar 

  87. Berra, E., et al. (2003). HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. The EMBO Journal, 22(16), 4082–4090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jaakkola, P., et al. (2001). Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science, 292(5516), 468–472.

    Article  CAS  PubMed  Google Scholar 

  89. Schofield, C. J., & Ratcliffe, P. J. (2005). Signalling hypoxia by HIF hydroxylases. Biochemical and Biophysical Research Communications, 338(1), 617–626.

    Article  CAS  PubMed  Google Scholar 

  90. Koivunen, P., et al. (2007). An endoplasmic reticulum transmembrane prolyl 4-hydroxylase is induced by hypoxia and acts on hypoxia-inducible factor alpha. The Journal of Biological Chemistry, 282(42), 30544–30552.

    Article  CAS  PubMed  Google Scholar 

  91. Hewitson, K. S., et al. (2002). Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. The Journal of Biological Chemistry, 277(29), 26351–26355.

    Article  CAS  PubMed  Google Scholar 

  92. Lee, C., et al. (2003). Structure of human FIH-1 reveals a unique active site pocket and interaction sites for HIF-1 and von Hippel-Lindau. The Journal of Biological Chemistry, 278(9), 7558–7563.

    Article  CAS  PubMed  Google Scholar 

  93. Soni, S., & Padwad, Y. S. (2017). HIF-1 in cancer therapy: Two decade long story of a transcription factor. Acta Oncologica, 56(4), 503–515.

    Article  CAS  PubMed  Google Scholar 

  94. Lim, J. H., et al. (2010). Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Molecular Cell, 38(6), 864–878.

    Article  CAS  PubMed  Google Scholar 

  95. Chandel, N. S., et al. (1998). Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proceedings of the National Academy of Sciences of the United States of America, 95(20), 11715–11720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chandel, N. S., et al. (2000). Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: A mechanism of O2 sensing. The Journal of Biological Chemistry, 275(33), 25130–25138.

    Article  CAS  PubMed  Google Scholar 

  97. Schroedl, C., et al. (2002). Hypoxic but not anoxic stabilization of HIF-1alpha requires mitochondrial reactive oxygen species. American Journal of Physiology. Lung Cellular and Molecular Physiology, 283(5), L922–L931.

    Article  CAS  PubMed  Google Scholar 

  98. Gerald, D., et al. (2004). JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell, 118(6), 781–794.

    Article  CAS  PubMed  Google Scholar 

  99. Kimura, H., et al. (2000). Hypoxia response element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide: Control of hypoxia-inducible factor-1 activity by nitric oxide. Blood, 95(1), 189–197.

    Article  CAS  PubMed  Google Scholar 

  100. Palmer, L. A., Gaston, B., & Johns, R. A. (2000). Normoxic stabilization of hypoxia-inducible factor-1 expression and activity: Redox-dependent effect of nitrogen oxides. Molecular Pharmacology, 58(6), 1197–1203.

    Article  CAS  PubMed  Google Scholar 

  101. Sandau, K. B., Faus, H. G., & Brune, B. (2000). Induction of hypoxia-inducible-factor 1 by nitric oxide is mediated via the PI 3K pathway. Biochemical and Biophysical Research Communications, 278(1), 263–267.

    Article  CAS  PubMed  Google Scholar 

  102. Sandau, K. B., Fandrey, J., & Brune, B. (2001). Accumulation of HIF-1alpha under the influence of nitric oxide. Blood, 97(4), 1009–1015.

    Article  CAS  PubMed  Google Scholar 

  103. Liu, Y., et al. (1998). Carbon monoxide and nitric oxide suppress the hypoxic induction of vascular endothelial growth factor gene via the 5′ enhancer. The Journal of Biological Chemistry, 273(24), 15257–15262.

    Article  CAS  PubMed  Google Scholar 

  104. Sogawa, K., et al. (1998). Inhibition of hypoxia-inducible factor 1 activity by nitric oxide donors in hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 95(13), 7368–7373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yin, J. H., et al. (2000). iNOS expression inhibits hypoxia-inducible factor-1 activity. Biochemical and Biophysical Research Communications, 279(1), 30–34.

    Article  CAS  PubMed  Google Scholar 

  106. Wenger, R. H., Stiehl, D. P., & Camenisch, G. (2005). Integration of oxygen signaling at the consensus HRE. Science’s STKE, 2005(306), re12.

    PubMed  Google Scholar 

  107. Semenza, G. L., et al. (1994). Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. The Journal of Biological Chemistry, 269(38), 23757–23763.

    Article  CAS  PubMed  Google Scholar 

  108. Jiang, B. H., et al. (1996). Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. The Journal of Biological Chemistry, 271(30), 17771–17778.

    Article  CAS  PubMed  Google Scholar 

  109. Wenger, R. H. (2000). Mammalian oxygen sensing, signalling and gene regulation. The Journal of Experimental Biology, 203(Pt 8), 1253–1263.

    CAS  PubMed  Google Scholar 

  110. Minchenko, A., et al. (2002). Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Its possible role in the Warburg effect. The Journal of Biological Chemistry, 277(8), 6183–6187.

    Article  CAS  PubMed  Google Scholar 

  111. Hayashi, M., et al. (2004). Induction of glucose transporter 1 expression through hypoxia-inducible factor 1alpha under hypoxic conditions in trophoblast-derived cells. The Journal of Endocrinology, 183(1), 145–154.

    Article  CAS  PubMed  Google Scholar 

  112. Liu, Y., et al. (2009). The expression and significance of HIF-1alpha and GLUT-3 in glioma. Brain Research, 1304, 149–154.

    Article  CAS  PubMed  Google Scholar 

  113. Zhang, H., et al. (2008). Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. The Journal of Biological Chemistry, 283(16), 10892–10903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sowter, H. M., et al. (2001). HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Research, 61(18), 6669–6673.

    CAS  PubMed  Google Scholar 

  115. Lu, C. W., et al. (2008). Induction of pyruvate dehydrogenase kinase-3 by hypoxia-inducible factor-1 promotes metabolic switch and drug resistance. The Journal of Biological Chemistry, 283(42), 28106–28114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bellot, G., et al. (2009). Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Molecular and Cellular Biology, 29(10), 2570–2581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ivan, M., et al. (2008). Hypoxia response and microRNAs: No longer two separate worlds. Journal of Cellular and Molecular Medicine, 12(5A), 1426–1431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Devlin, C., et al. (2011). miR-210: More than a silent player in hypoxia. IUBMB Life, 63(2), 94–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Chan, S. Y., et al. (2009). MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell Metabolism, 10(4), 273–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Favaro, E., et al. (2010). MicroRNA-210 regulates mitochondrial free radical response to hypoxia and Krebs cycle in cancer cells by targeting iron sulfur cluster protein ISCU. PLoS One, 5(4), e10345.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Metallo, C. M., et al. (2011). Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature, 481(7381), 380–384.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Wise, D. R., et al. (2011). Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proceedings of the National Academy of Sciences of the United States of America, 108(49), 19611–19616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Du, W., et al. (2017). HIF drives lipid deposition and cancer in ccRCC via repression of fatty acid metabolism. Nature Communications, 8(1), 1769.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Griffiths, J. R., et al. (2002). Metabolic changes detected by in vivo magnetic resonance studies of HEPA-1 wild-type tumors and tumors deficient in hypoxia-inducible factor-1beta (HIF-1beta): Evidence of an anabolic role for the HIF-1 pathway. Cancer Research, 62(3), 688–695.

    CAS  PubMed  Google Scholar 

  125. Younes, M., Lechago, L. V., & Lechago, J. (1996). Overexpression of the human erythrocyte glucose transporter occurs as a late event in human colorectal carcinogenesis and is associated with an increased incidence of lymph node metastases. Clinical Cancer Research, 2(7), 1151–1154.

    CAS  PubMed  Google Scholar 

  126. Semenza, G. L. (2009). Regulation of cancer cell metabolism by hypoxia-inducible factor 1. Seminars in Cancer Biology, 19(1), 12–16.

    Article  CAS  PubMed  Google Scholar 

  127. Pinheiro, C., et al. (2012). Role of monocarboxylate transporters in human cancers: State of the art. Journal of Bioenergetics and Biomembranes, 44(1), 127–139.

    Article  CAS  PubMed  Google Scholar 

  128. Chiche, J., Brahimi-Horn, M. C., & Pouyssegur, J. (2010). Tumour hypoxia induces a metabolic shift causing acidosis: A common feature in cancer. Journal of Cellular and Molecular Medicine, 14(4), 771–794.

    Article  CAS  PubMed  Google Scholar 

  129. Swietach, P., et al. (2008). Tumor-associated carbonic anhydrase 9 spatially coordinates intracellular pH in three-dimensional multicellular growths. The Journal of Biological Chemistry, 283(29), 20473–20483.

    Article  CAS  PubMed  Google Scholar 

  130. Gatenby, R. A., et al. (2007). Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer. British Journal of Cancer, 97(5), 646–653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Christofk, H. R., et al. (2008). The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature, 452(7184), 230–233.

    Article  CAS  PubMed  Google Scholar 

  132. Luo, W., et al. (2011). Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell, 145(5), 732–744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Gao, X., et al. (2012). Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Molecular Cell, 45(5), 598–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Dvorak, H. F. (1986). Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. The New England Journal of Medicine, 315(26), 1650–1659.

    Article  CAS  PubMed  Google Scholar 

  135. Vaupel, P., Schaefer, C., & Okunieff, P. (1994). Intracellular acidosis in murine fibrosarcomas coincides with ATP depletion, hypoxia, and high levels of lactate and total pi. NMR in Biomedicine, 7(3), 128–136.

    Article  CAS  PubMed  Google Scholar 

  136. Denko, N. C., & Giaccia, A. J. (2001). Tumor hypoxia, the physiological link between Trousseau’s syndrome (carcinoma-induced coagulopathy) and metastasis. Cancer Research, 61(3), 795–798.

    CAS  PubMed  Google Scholar 

  137. Vaupel, P., & Mayer, A. (2014). Hypoxia in tumors: Pathogenesis-related classification, characterization of hypoxia subtypes, and associated biological and clinical implications. Advances in Experimental Medicine and Biology, 812, 19–24.

    Article  CAS  PubMed  Google Scholar 

  138. Zhong, H., et al. (1999). Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Research, 59(22), 5830–5835.

    CAS  PubMed  Google Scholar 

  139. Talks, K. L., et al. (2000). The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. The American Journal of Pathology, 157(2), 411–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Koshikawa, N., et al. (2003). Constitutive upregulation of hypoxia-inducible factor-1alpha mRNA occurring in highly metastatic lung carcinoma cells leads to vascular endothelial growth factor overexpression upon hypoxic exposure. Oncogene, 22(43), 6717–6724.

    Article  CAS  PubMed  Google Scholar 

  141. Hockel, M., et al. (1996). Hypoxia and radiation response in human tumors. Seminars in Radiation Oncology, 6(1), 3–9.

    Article  CAS  PubMed  Google Scholar 

  142. Hockel, M., et al. (1998). Tumor hypoxia in pelvic recurrences of cervical cancer. International Journal of Cancer, 79(4), 365–369.

    Article  CAS  PubMed  Google Scholar 

  143. Hockel, M., et al. (1999). Hypoxic cervical cancers with low apoptotic index are highly aggressive. Cancer Research, 59(18), 4525–4528.

    CAS  PubMed  Google Scholar 

  144. Semenza, G. L. (2011). Oxygen sensing, homeostasis, and disease. The New England Journal of Medicine, 365(6), 537–547.

    Article  CAS  PubMed  Google Scholar 

  145. Doedens, A. L., et al. (2010). Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Research, 70(19), 7465–7475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Takeda, N., et al. (2010). Differential activation and antagonistic function of HIF-{alpha} isoforms in macrophages are essential for NO homeostasis. Genes & Development, 24(5), 491–501.

    Article  CAS  Google Scholar 

  147. Noman, M. Z., et al. (2014). PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. The Journal of Experimental Medicine, 211(5), 781–790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lee, J. H., et al. (2015). E3 ubiquitin ligase VHL regulates hypoxia-inducible factor-1α to maintain regulatory T cell stability and suppressive capacity. Immunity, 42(6), 1062–1074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Okegawa, T., et al. (2004). The role of cell adhesion molecule in cancer progression and its application in cancer therapy. Acta Biochimica Polonica, 51(2), 445–457.

    Article  CAS  PubMed  Google Scholar 

  150. Cowden Dahl, K. D., et al. (2005). Hypoxia-inducible factor regulates alphavbeta3 integrin cell surface expression. Molecular Biology of the Cell, 16(4), 1901–1912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ryu, M. H., et al. (2010). Hypoxia-inducible factor-1alpha mediates oral squamous cell carcinoma invasion via upregulation of alpha5 integrin and fibronectin. Biochemical and Biophysical Research Communications, 393(1), 11–15.

    Article  CAS  PubMed  Google Scholar 

  152. Lee, S. H., Lee, Y. J., & Han, H. J. (2011). Role of hypoxia-induced fibronectin-integrin beta1 expression in embryonic stem cell proliferation and migration: Involvement of PI3K/Akt and FAK. Journal of Cellular Physiology, 226(2), 484–493.

    Article  CAS  PubMed  Google Scholar 

  153. Krishnamachary, B., et al. (2006). Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Research, 66(5), 2725–2731.

    Article  CAS  PubMed  Google Scholar 

  154. Zhang, Y., Fan, N., & Yang, J. (2015). Expression and clinical significance of hypoxia-inducible factor 1alpha, snail and E-cadherin in human ovarian cancer cell lines. Molecular Medicine Reports, 12(3), 3393–3399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Barak, V., et al. (2011). VEGF as a biomarker for metastatic Uveal melanoma in humans. Current Eye Research, 36(4), 386–390.

    Article  CAS  PubMed  Google Scholar 

  156. Semenza, G. L. (2012). Hypoxia-inducible factors: Mediators of cancer progression and targets for cancer therapy. Trends in Pharmacological Sciences, 33(4), 207–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hasan, N. M., et al. (1998). Hypoxia facilitates tumour cell detachment by reducing expression of surface adhesion molecules and adhesion to extracellular matrices without loss of cell viability. British Journal of Cancer, 77(11), 1799–1805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Peng, J. K., et al. (2018). Etaypoxia-inducible factor 1-alpha promotes colon cell proliferation and migration by upregulating AMPK-related protein kinase 5 under hypoxic conditions. Oncology Letters, 15(3), 3639–3645.

    PubMed  PubMed Central  Google Scholar 

  159. Suzuki, A., et al. (2003). ARK5 suppresses the cell death induced by nutrient starvation and death receptors via inhibition of caspase 8 activation, but not by chemotherapeutic agents or UV irradiation. Oncogene, 22(40), 6177–6182.

    Article  CAS  PubMed  Google Scholar 

  160. Suzuki, A., et al. (2004). Regulation of caspase-6 and FLIP by the AMPK family member ARK5. Oncogene, 23(42), 7067–7075.

    Article  CAS  PubMed  Google Scholar 

  161. Lu, S., et al. (2013). ARK5 promotes glioma cell invasion, and its elevated expression is correlated with poor clinical outcome. European Journal of Cancer, 49(3), 752–763.

    Article  CAS  PubMed  Google Scholar 

  162. Lester, R. D., et al. (2005). Erythropoietin promotes MCF-7 breast cancer cell migration by an ERK/mitogen-activated protein kinase-dependent pathway and is primarily responsible for the increase in migration observed in hypoxia. The Journal of Biological Chemistry, 280(47), 39273–39277.

    Article  CAS  PubMed  Google Scholar 

  163. Cannito, S., et al. (2008). Redox mechanisms switch on hypoxia-dependent epithelial-mesenchymal transition in cancer cells. Carcinogenesis, 29(12), 2267–2278.

    Article  CAS  PubMed  Google Scholar 

  164. Matsuoka, J., et al. (2013). Hypoxia stimulates the EMT of gastric cancer cells through autocrine TGFbeta signaling. PLoS One, 8(5), e62310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Yang, M. H., et al. (2008). Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nature Cell Biology, 10(3), 295–305.

    Article  CAS  PubMed  Google Scholar 

  166. Lendahl, U., et al. (2009). Generating specificity and diversity in the transcriptional response to hypoxia. Nature Reviews Genetics, 10(12), 821–832.

    Article  CAS  PubMed  Google Scholar 

  167. Tsai, Y. P., & Wu, K. J. (2012). Hypoxia-regulated target genes implicated in tumor metastasis. Journal of Biomedical Science, 19, 102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Chu, C. Y., et al. (2016). CA IX is upregulated in CoCl2-induced hypoxia and associated with cell invasive potential and a poor prognosis of breast cancer. International Journal of Oncology, 48(1), 271–280.

    Article  CAS  PubMed  Google Scholar 

  169. Evans, A. J., et al. (2007). VHL promotes E2 box-dependent E-cadherin transcription by HIF-mediated regulation of SIP1 and snail. Molecular and Cellular Biology, 27(1), 157–169.

    Article  CAS  PubMed  Google Scholar 

  170. de Herreros, A. G., et al. (2010). Snail family regulation and epithelial mesenchymal transitions in breast cancer progression. Journal of Mammary Gland Biology and Neoplasia, 15(2), 135–147.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Luo, Y., et al. (2006). Over-expression of hypoxia-inducible factor-1alpha increases the invasive potency of LNCaP cells in vitro. BJU International, 98(6), 1315–1319.

    Article  CAS  PubMed  Google Scholar 

  172. O’Toole, E. A., et al. (2008). Hypoxia induces epidermal keratinocyte matrix metalloproteinase-9 secretion via the protein kinase C pathway. Journal of Cellular Physiology, 214(1), 47–55.

    Article  PubMed  CAS  Google Scholar 

  173. Lin, M. T., et al. (2008). Involvement of hypoxia-inducing factor-1alpha-dependent plasminogen activator inhibitor-1 up-regulation in Cyr61/CCN1-induced gastric cancer cell invasion. The Journal of Biological Chemistry, 283(23), 15807–15815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Buchler, P., et al. (2009). Transcriptional regulation of urokinase-type plasminogen activator receptor by hypoxia-inducible factor 1 is crucial for invasion of pancreatic and liver cancer. Neoplasia, 11(2), 196–206.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Pennacchietti, S., et al. (2003). Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell, 3(4), 347–361.

    Article  PubMed  Google Scholar 

  176. Ishikawa, T., et al. (2009). Hypoxia enhances CXCR4 expression by activating HIF-1 in oral squamous cell carcinoma. Oncology Reports, 21(3), 707–712.

    CAS  PubMed  Google Scholar 

  177. Li, Y., et al. (2009). Hypoxia induced CCR7 expression via HIF-1alpha and HIF-2alpha correlates with migration and invasion in lung cancer cells. Cancer Biology & Therapy, 8(4), 322–330.

    Article  CAS  Google Scholar 

  178. Erler, J. T., et al. (2006). Lysyl oxidase is essential for hypoxia-induced metastasis. Nature, 440(7088), 1222–1226.

    Article  CAS  PubMed  Google Scholar 

  179. Funasaka, T., et al. (2005). Regulation of phosphoglucose isomerase/autocrine motility factor expression by hypoxia. The FASEB Journal, 19(11), 1422–1430.

    Article  CAS  PubMed  Google Scholar 

  180. Staller, P., et al. (2003). Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature, 425(6955), 307–311.

    Article  CAS  PubMed  Google Scholar 

  181. Pan, J., et al. (2006). Stromal derived factor-1 (SDF-1/CXCL12) and CXCR4 in renal cell carcinoma metastasis. Molecular Cancer, 5, 56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Castillo Bennett, J., et al. (2018). Hypoxia-induced Caveolin-1 expression promotes migration and invasion of tumor cells. Current Molecular Medicine, 18(4), 199–206.

    CAS  PubMed  Google Scholar 

  183. Krishnamachary, B., et al. (2003). Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Research, 63(5), 1138–1143.

    CAS  PubMed  Google Scholar 

  184. Nikitenko, L. L., et al. (2003). Transcriptional regulation of the CRLR gene in human microvascular endothelial cells by hypoxia. The FASEB Journal, 17(11), 1499–1501.

    Article  CAS  PubMed  Google Scholar 

  185. Pugh, C. W., & Ratcliffe, P. J. (2003). Regulation of angiogenesis by hypoxia: Role of the HIF system. Nature Medicine, 9(6), 677–684.

    Article  CAS  PubMed  Google Scholar 

  186. Kotch, L. E., et al. (1999). Defective vascularization of HIF-1alpha-null embryos is not associated with VEGF deficiency but with mesenchymal cell death. Developmental Biology, 209(2), 254–267.

    Article  CAS  PubMed  Google Scholar 

  187. Maruggi, M., et al. (2019). Absence of HIF1A leads to glycogen accumulation and an inflammatory response that enables pancreatic tumor growth. Cancer Research, 79(22), 5839–5848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Cheng, J., et al. (2007). SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell, 131(3), 584–595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Xu, Y., et al. (2010). Induction of SENP1 in endothelial cells contributes to hypoxia-driven VEGF expression and angiogenesis. The Journal of Biological Chemistry, 285(47), 36682–36688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Riva, C., et al. (1998). Cellular physiology and molecular events in hypoxia-induced apoptosis. Anticancer Research, 18(6b), 4729–4736.

    CAS  PubMed  Google Scholar 

  191. Hammond, E. M., Dorie, M. J., & Giaccia, A. J. (2003). ATR/ATM targets are phosphorylated by ATR in response to hypoxia and ATM in response to reoxygenation. The Journal of Biological Chemistry, 278(14), 12207–12213.

    Article  CAS  PubMed  Google Scholar 

  192. Akakura, N., et al. (2001). Constitutive expression of hypoxia-inducible factor-1alpha renders pancreatic cancer cells resistant to apoptosis induced by hypoxia and nutrient deprivation. Cancer Research, 61(17), 6548–6554.

    CAS  PubMed  Google Scholar 

  193. Carmeliet, P., et al. (1998). Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature, 394(6692), 485–490.

    Article  CAS  PubMed  Google Scholar 

  194. Santore, M. T., et al. (2002). Anoxia-induced apoptosis occurs through a mitochondria-dependent pathway in lung epithelial cells. American Journal of Physiology. Lung Cellular and Molecular Physiology, 282(4), L727–L734.

    Article  CAS  PubMed  Google Scholar 

  195. Kumar, H., & Choi, D. K. (2015). Hypoxia inducible factor pathway and physiological adaptation: A cell survival pathway? Mediators of Inflammation, 2015, 584758.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. McClintock, D. S., et al. (2002). Bcl-2 family members and functional electron transport chain regulate oxygen deprivation-induced cell death. Molecular and Cellular Biology, 22(1), 94–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Yoo, B. H., et al. (2009). Hypoxia-induced downregulation of autophagy mediator Beclin 1 reduces the susceptibility of malignant intestinal epithelial cells to hypoxia-dependent apoptosis. Autophagy, 5(8), 1166–1179.

    Article  CAS  PubMed  Google Scholar 

  198. Soengas, M. S., et al. (1999). Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science, 284(5411), 156–159.

    Article  CAS  PubMed  Google Scholar 

  199. Li, F., et al. (2015). Curcumin induces p53-independent necrosis in H1299 cells via a mitochondria-associated pathway. Molecular Medicine Reports, 12(5), 7806–7814.

    Article  CAS  PubMed  Google Scholar 

  200. Shimizu, S., et al. (1995). Prevention of hypoxia-induced cell death by Bcl-2 and Bcl-xL. Nature, 374(6525), 811–813.

    Article  CAS  PubMed  Google Scholar 

  201. Kim, J. Y., et al. (2004). BH3-only protein Noxa is a mediator of hypoxic cell death induced by hypoxia-inducible factor 1alpha. The Journal of Experimental Medicine, 199(1), 113–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Zagzag, D., et al. (2000). Expression of hypoxia-inducible factor 1alpha in brain tumors: Association with angiogenesis, invasion, and progression. Cancer, 88(11), 2606–2618.

    Article  CAS  PubMed  Google Scholar 

  203. Schindl, M., et al. (2002). Overexpression of hypoxia-inducible factor 1alpha is associated with an unfavorable prognosis in lymph node-positive breast cancer. Clinical Cancer Research, 8(6), 1831–1837.

    CAS  PubMed  Google Scholar 

  204. Bos, R., et al. (2003). Levels of hypoxia-inducible factor-1alpha independently predict prognosis in patients with lymph node negative breast carcinoma. Cancer, 97(6), 1573–1581.

    Article  PubMed  Google Scholar 

  205. Aebersold, D. M., et al. (2001). Expression of hypoxia-inducible factor-1alpha: A novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Research, 61(7), 2911–2916.

    CAS  PubMed  Google Scholar 

  206. Beasley, N. J., et al. (2002). Hypoxia-inducible factors HIF-1alpha and HIF-2alpha in head and neck cancer: Relationship to tumor biology and treatment outcome in surgically resected patients. Cancer Research, 62(9), 2493–2497.

    CAS  PubMed  Google Scholar 

  207. Koukourakis, M. I., et al. (2002). Hypoxia-inducible factor (HIF1A and HIF2A), angiogenesis, and chemoradiotherapy outcome of squamous cell head-and-neck cancer. International Journal of Radiation Oncology, Biology, Physics, 53(5), 1192–1202.

    Article  CAS  PubMed  Google Scholar 

  208. Birner, P., et al. (2001). Expression of hypoxia-inducible factor 1alpha in epithelial ovarian tumors: Its impact on prognosis and on response to chemotherapy. Clinical Cancer Research, 7(6), 1661–1668.

    CAS  PubMed  Google Scholar 

  209. Zhang, X., et al. (2019). Interaction between p53 and Ras signaling controls cisplatin resistance via HDAC4- and HIF-1alpha-mediated regulation of apoptosis and autophagy. Theranostics, 9(4), 1096–1114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Jiang, X., et al. (2019). The correlation between NEDD4L and HIF-1alpha levels as a gastric cancer prognostic marker. International Journal of Medical Sciences, 16(11), 1517–1524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Koukourakis, M. I., et al. (2001). Hypoxia inducible factor (HIF-1a and HIF-2a) expression in early esophageal cancer and response to photodynamic therapy and radiotherapy. Cancer Research, 61(5), 1830–1832.

    CAS  PubMed  Google Scholar 

  212. Wigerup, C., Pahlman, S., & Bexell, D. (2016). Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacology & Therapeutics, 164, 152–169.

    Article  CAS  Google Scholar 

  213. Masoud, G. N., & Li, W. (2015). HIF-1alpha pathway: Role, regulation and intervention for cancer therapy. Acta Pharmaceutica Sinica B, 5(5), 378–389.

    Article  PubMed  PubMed Central  Google Scholar 

  214. Hu, Y., Liu, J., & Huang, H. (2013). Recent agents targeting HIF-1alpha for cancer therapy. Journal of Cellular Biochemistry, 114(3), 498–509.

    Article  CAS  PubMed  Google Scholar 

  215. Falchook, G. S., et al. (2014). Targeting hypoxia-inducible factor-1alpha (HIF-1alpha) in combination with antiangiogenic therapy: A phase I trial of bortezomib plus bevacizumab. Oncotarget, 5(21), 10280–10292.

    Article  PubMed  PubMed Central  Google Scholar 

  216. Ban, H. S., et al. (2016). Hypoxia-inducible factor (HIF) inhibitors: A patent survey (2011–2015). Expert Opinion on Therapeutic Patents, 26(3), 309–322.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Naseim Elzakra or Yong Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elzakra, N., Kim, Y. (2021). HIF-1α Metabolic Pathways in Human Cancer. In: Hu, S. (eds) Cancer Metabolomics. Advances in Experimental Medicine and Biology, vol 1280. Springer, Cham. https://doi.org/10.1007/978-3-030-51652-9_17

Download citation

Publish with us

Policies and ethics